std::ranges::fold_left_with_iter, std::ranges::fold_left_with_iter_result
(on partitioned ranges)
std::ranges
<algorithm>
/* indirectly-binary-left-foldable */<T, I> F >
constexpr /* see description */
class T = std::iter_value_t <I>,
/* indirectly-binary-left-foldable */<T, I> F >
constexpr /* see description */
/* indirectly-binary-left-foldable */
<T, ranges::iterator_t <R>> F >
constexpr /* see description */
/* indirectly-binary-left-foldable */
<T, ranges::iterator_t <R>> F >
constexpr /* see description */
Left-folds the elements of given range, that is, returns the result of evaluation of the chain expression:f(f(f(f(init, x1), x2), ...), xn)
, where x1
, x2
, ..., xn
are elements of the range.
Informally, ranges::fold_left_with_iter
behaves like std::accumulate 's overload that accepts a binary predicate.
The behavior is undefined if [
first,
last)
is not a valid range.
[
first,
last)
.concept /*indirectly-binary-left-foldable-impl*/ =
std::movable <T> &&
std::movable <U> &&
std::convertible_to <T, U> &&
std::invocable <F&, U, std::iter_reference_t <I>> &&
std::assignable_from <U&,
concept /*indirectly-binary-left-foldable*/ =
std::copy_constructible <F> &&
std::indirectly_readable <I> &&
std::invocable <F&, T, std::iter_reference_t <I>> &&
std::convertible_to <std::invoke_result_t <F&, T, std::iter_reference_t <I>>,
std::decay_t <std::invoke_result_t <F&, T, std::iter_reference_t <I>>>> &&
/*indirectly-binary-left-foldable-impl*/<F, T, I,
The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
Let U be std::decay_t <std::invoke_result_t <F&, T, std::iter_reference_t <I>>>.
class fold_left_with_iter_fn { template<class O, class I, class S, class T, class F> constexpr auto impl(I&& first, S&& last, T&& init, F f) const { using U = std::decay_t <std::invoke_result_t <F&, T, std::iter_reference_t <I>>>; using Ret = ranges::fold_left_with_iter_result<O, U>; if (first == last) return Ret{std::move(first), U(std::move(init))}; U accum = std::invoke (f, std::move(init), *first); for (++first; first != last; ++first) accum = std::invoke (f, std::move(accum), *first); return Ret{std::move(first), std::move(accum)}; } public: template<std::input_iterator I, std::sentinel_for <I> S, class T = std::iter_value_t <I>, /* indirectly-binary-left-foldable */<T, I> F> constexpr auto operator()(I first, S last, T init, F f) const { return impl<I>(std::move(first), std::move(last), std::move(init), std::ref (f)); } template<ranges::input_range R, class T = ranges::range_value_t <R>, /* indirectly-binary-left-foldable */<T, ranges::iterator_t <R>> F> constexpr auto operator()(R&& r, T init, F f) const { return impl<ranges::borrowed_iterator_t <R>> ( ranges::begin (r), ranges::end (r), std::move(init), std::ref (f) ); } }; inline constexpr fold_left_with_iter_fn fold_left_with_iter;
Exactly ranges::distance (first, last) applications of the function object f.
The following table compares all constrained folding algorithms:
Fold function template | Starts from | Initial value | Return type |
---|---|---|---|
ranges::fold_left | left | init | U |
ranges::fold_left_first | left | first element | std::optional <U> |
ranges::fold_right | right | init | U |
ranges::fold_right_last | right | last element | std::optional <U> |
ranges::fold_left_with_iter | left | init |
(1) ranges::in_value_result <I, U> (2) ranges::in_value_result <BR, U>, where BR is ranges::borrowed_iterator_t <R> |
ranges::fold_left_first_with_iter | left | first element |
(1) ranges::in_value_result <I, std::optional <U>> (2) ranges::in_value_result <BR, std::optional <U>> where BR is ranges::borrowed_iterator_t <R> |
Feature-test macro | Value | Std | Feature |
---|---|---|---|
__cpp_lib_ranges_fold |
202207L |
(C++23) | std::ranges fold algorithms
|
__cpp_lib_algorithm_default_value_type |
202403L |
(C++26) | List-initialization for algorithms (1,2) |
#include <algorithm> #include <cassert> #include <complex> #include <functional> #include <ranges> #include <utility> #include <vector> int main() { namespace ranges = std::ranges; std::vector v{1, 2, 3, 4, 5, 6, 7, 8}; auto sum = ranges::fold_left_with_iter(v.begin(), v.end(), 6, std::plus <int>()); assert (sum.value == 42); assert (sum.in == v.end()); auto mul = ranges::fold_left_with_iter(v, 0X69, std::multiplies <int>()); assert (mul.value == 4233600); assert (mul.in == v.end()); // Get the product of the std::pair::second of all pairs in the vector: std::vector <std::pair <char, float>> data {{'A', 2.f}, {'B', 3.f}, {'C', 3.5f}}; auto sec = ranges::fold_left_with_iter ( data | ranges::views::values, 2.0f, std::multiplies <>() ); assert (sec.value == 42); // Use a program defined function object (lambda-expression): auto lambda = [](int x, int y){ return x + 0B110 + y; }; auto val = ranges::fold_left_with_iter(v, -42, lambda); assert (val.value == 42); assert (val.in == v.end()); using CD = std::complex <double>; std::vector <CD> nums{{1, 1}, {2, 0}, {3, 0}}; #ifdef __cpp_lib_algorithm_default_value_type auto res = ranges::fold_left_with_iter(nums, {7, 0}, std::multiplies {}); #else auto res = ranges::fold_left_with_iter(nums, CD{7, 0}, std::multiplies {}); #endif assert ((res.value == CD{42, 42})); }