std::ranges::is_partitioned
From cppreference.com
C++
Feature test macros (C++20)
Concepts library (C++20)
Metaprogramming library (C++11)
Ranges library (C++20)
Filesystem library (C++17)
Concurrency support library (C++11)
Execution control library (C++26)
Algorithm library
Constrained algorithms, e.g. ranges::copy, ranges::sort, ...
(C++17)
(C++17) (C++17)(C++17)(C++20)
(C++17)
(C++11)
(until C++17)(C++11)
(C++20)(C++20)
(C++17)
(C++17)
(C++17)
(C++17)
Constrained algorithms
All names in this menu belong to namespace
std::ranges
(C++23)
(C++23)
(C++23)
(C++23)
(C++23)
(C++23)
(C++23)
Defined in header
<algorithm>
Call signature
template< std::input_iterator I, std::sentinel_for <I> S,
(1)
(since C++20)
class Proj = std::identity,
std::indirect_unary_predicate <std::projected <I, Proj>> Pred >
constexpr bool
template< ranges::input_range R, class Proj = std::identity,
(2)
(since C++20)
std::indirect_unary_predicate <
std::projected <ranges::iterator_t <R>, Proj>> Pred >
constexpr bool
1) Returns true if all elements in the range
[
first,
last)
that satisfy the predicate pred after projection appear before all elements that don't. Also returns true if [
first,
last)
is empty.2) Same as (1), but uses r as the source range, as if using ranges::begin (r) as first and ranges::end (r) as last.
The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
[edit] Parameters
first, last
-
the iterator-sentinel pair defining the range of elements to examine
r
-
the range of elements to examine
pred
-
predicate to apply to the projected elements
proj
-
projection to apply to the elements
[edit] Return value
true if the range [
first,
last)
is empty or is partitioned by pred, false otherwise.
[edit] Complexity
At most ranges::distance (first, last) applications of pred and proj.
[edit] Possible implementation
struct is_partitioned_fn { template<std::input_iterator I, std::sentinel_for <I> S, class Proj = std::identity, std::indirect_unary_predicate <std::projected <I, Proj>> Pred> constexpr bool operator()(I first, S last, Pred pred, Proj proj = {}) const { for (; first != last; ++first) if (!std::invoke (pred, std::invoke (proj, *first))) break; for (; first != last; ++first) if (std::invoke (pred, std::invoke (proj, *first))) return false; return true; } template<ranges::input_range R, class Proj = std::identity, std::indirect_unary_predicate <std::projected <ranges::iterator_t <R>, Proj>> Pred> constexpr bool operator()(R&& r, Pred pred, Proj proj = {}) const { return (*this)(ranges::begin (r), ranges::end (r), std::ref (pred), std::ref (proj)); } }; inline constexpr auto is_partitioned = is_partitioned_fn();
[edit] Example
Run this code
#include <algorithm> #include <array> #include <iostream> #include <numeric> #include <utility> int main() { std::array <int, 9> v; auto print = [&v](bool o) { for (int x : v) std::cout << x << ' '; std::cout << (o ? "=> " : "=> not ") << "partitioned\n"; }; auto is_even = [](int i) { return i % 2 == 0; }; std::iota (v.begin(), v.end(), 1); // or std::ranges::iota(v, 1); print(std::ranges::is_partitioned(v, is_even)); std::ranges::partition (v, is_even); print(std::ranges::is_partitioned(std::as_const (v), is_even)); std::ranges::reverse (v); print(std::ranges::is_partitioned(v.cbegin(), v.cend(), is_even)); print(std::ranges::is_partitioned(v.crbegin(), v.crend(), is_even)); }
Output:
1 2 3 4 5 6 7 8 9 => not partitioned 2 4 6 8 5 3 7 1 9 => partitioned 9 1 7 3 5 8 6 4 2 => not partitioned 9 1 7 3 5 8 6 4 2 => partitioned