std::ranges::equal_range
(on partitioned ranges)
std::ranges
<algorithm>
class T, class Proj = std::identity,
std::indirect_strict_weak_order
<const T*, std::projected <I, Proj>> Comp = ranges::less >
constexpr ranges::subrange <I> equal_range( I first, S last, const T& value,
class Proj = std::identity,
class T = std::projected_value_t<I, Proj>,
std::indirect_strict_weak_order
<const T*, std::projected <I, Proj>> Comp = ranges::less >
constexpr ranges::subrange <I> equal_range( I first, S last, const T& value,
class T, class Proj = std::identity,
std::indirect_strict_weak_order
<const T*, std::projected <ranges::iterator_t <R>,
Proj>> Comp = ranges::less >
constexpr ranges::borrowed_subrange_t <R>
class Proj = std::identity,
class T = std::projected_value_t<ranges::iterator_t <R>, Proj>,
std::indirect_strict_weak_order
<const T*, std::projected <ranges::iterator_t <R>,
Proj>> Comp = ranges::less >
constexpr ranges::borrowed_subrange_t <R>
[
first,
last)
.The range [
first,
last)
must be at least partially ordered with respect to value, i.e. it must satisfy all of the following requirements:
A fully-sorted range meets these criteria.
The returned view is constructed from two iterators, one pointing to the first element that is not less than value and another pointing to the first element greater than value. The first iterator may be alternatively obtained with std::ranges::lower_bound(), the second - with std::ranges::upper_bound().
The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
std::ranges::subrange containing a pair of iterators defining the wanted range, the first pointing to the first element that is not less than value and the second pointing to the first element greater than value.
If there are no elements not less than value, the last iterator (iterator that is equal to last or ranges::end (r)) is returned as the first element. Similarly if there are no elements greater than value, the last iterator is returned as the second element.
The number of comparisons performed is logarithmic in the distance between first and last (at most 2 * log2(last - first) + O(1) comparisons). However, for an iterator that does not model random_access_iterator
, the number of iterator increments is linear.
struct equal_range_fn { template<std::forward_iterator I, std::sentinel_for <I> S, class Proj = std::identity, class T = std::projected_value_t<I, Proj>, std::indirect_strict_weak_order <const T*, std::projected <I, Proj>> Comp = ranges::less > constexpr ranges::subrange <I> operator()(I first, S last, const T& value, Comp comp = {}, Proj proj = {}) const { return ranges::subrange ( ranges::lower_bound (first, last, value, std::ref (comp), std::ref (proj)), ranges::upper_bound (first, last, value, std::ref (comp), std::ref (proj)) ); } template<ranges::forward_range R, class Proj = std::identity, class T = std::projected_value_t<ranges::iterator_t <R>, Proj>, std::indirect_strict_weak_order <const T*, std::projected <ranges::iterator_t <R>, Proj>> Comp = ranges::less > constexpr ranges::borrowed_subrange_t <R> operator()(R&& r, const T& value, Comp comp = {}, Proj proj = {}) const { return (*this)(ranges::begin (r), ranges::end (r), value, std::ref (comp), std::ref (proj)); } }; inline constexpr equal_range_fn equal_range;
Feature-test macro | Value | Std | Feature |
---|---|---|---|
__cpp_lib_algorithm_default_value_type |
202403 |
(C++26) | List-initialization for algorithms (1,2) |
#include <algorithm> #include <compare> #include <complex> #include <iostream> #include <vector> struct S { int number {}; char name {}; // note: name is ignored by these comparison operators friend bool operator== (const S s1, const S s2) { return s1.number == s2.number; } friend auto operator<=>(const S s1, const S s2) { return s1.number <=> s2.number; } friend std::ostream & operator<<(std::ostream & os, S o) { return os << '{' << o.number << ", '" << o.name << "'}"; } }; void println(auto rem, const auto& v) { for (std::cout << rem; const auto& e : v) std::cout << e << ' '; std::cout << '\n'; } int main() { // note: not ordered, only partitioned w.r.t. S defined below std::vector <S> vec { {1,'A'}, {2,'B'}, {2,'C'}, {2,'D'}, {4, 'D'}, {4,'G'}, {3,'F'} }; const S value{2, '?'}; namespace ranges = std::ranges; auto a = ranges::equal_range(vec, value); println("1. ", a); auto b = ranges::equal_range(vec.begin(), vec.end(), value); println("2. ", b); auto c = ranges::equal_range(vec, 'D', ranges::less {}, &S::name); println("3. ", c); auto d = ranges::equal_range(vec.begin(), vec.end(), 'D', ranges::less {}, &S::name); println("4. ", d); using CD = std::complex <double>; std::vector <CD> nums{{1, 0}, {2, 2}, {2, 1}, {3, 0}, {3, 1}}; auto cmpz = [](CD x, CD y) { return x.real() < y.real(); }; #ifdef __cpp_lib_algorithm_default_value_type auto p3 = ranges::equal_range(nums, {2, 0}, cmpz); #else auto p3 = ranges::equal_range(nums, CD{2, 0}, cmpz); #endif println("5. ", p3); }
Output:
1. {2, 'B'} {2, 'C'} {2, 'D'} 2. {2, 'B'} {2, 'C'} {2, 'D'} 3. {2, 'D'} {4, 'D'} 4. {2, 'D'} {4, 'D'} 5. (2,2) (2,1)