std::ranges::unique
std::ranges
<algorithm>
std::indirect_equivalence_relation <std::projected <I, Proj>>
C = ranges::equal_to >
constexpr ranges::subrange <I>
std::indirect_equivalence_relation <std::projected <ranges::iterator_t <R>, Proj>>
C = ranges::equal_to >
requires std::permutable <ranges::iterator_t <R>>
constexpr ranges::borrowed_subrange_t <R>
[
first,
last)
and returns a subrange [
ret,
last)
, where ret
is a past-the-end iterator for the new end of the range.*(i - 1)
and *i
are considered equivalent if std::invoke (comp, std::invoke (proj, *(i - 1)), std::invoke (proj, *i)) == true, where i
is an iterator in the range [
first + 1,
last)
.The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
Contents
[edit] Parameters
[edit] Return value
Returns {ret, last}, where ret
is a past-the-end iterator for the new end of the range.
[edit] Complexity
For nonempty ranges, exactly ranges::distance (first, last) - 1 applications of the corresponding predicate comp and no more that twice as many applications of any projection proj.
[edit] Notes
Removing is done by shifting (by means of move assignment) the elements in the range in such a way that the elements that are not to be removed appear in the beginning of the range. Relative order of the elements that remain is preserved and the physical size of the container is unchanged. Iterators in [
ret,
last)
(if any) are still dereferenceable, but the elements themselves have unspecified values (as per MoveAssignable post-condition).
A call to ranges::unique
is sometimes followed by a call to a container’s erase
member function, which erases the unspecified values and reduces the physical size of the container to match its new logical size. These two invocations together model the Erase–remove idiom.
[edit] Possible implementation
struct unique_fn { template<std::permutable I, std::sentinel_for <I> S, class Proj = std::identity, std::indirect_equivalence_relation <std::projected <I, Proj>> C = ranges::equal_to > constexpr ranges::subrange <I> operator()(I first, S last, C comp = {}, Proj proj = {}) const { first = ranges::adjacent_find (first, last, comp, proj); if (first == last) return {first, first}; auto i {first}; ++first; while (++first != last) if (!std::invoke (comp, std::invoke (proj, *i), std::invoke (proj, *first))) *++i = ranges::iter_move (first); return {++i, first}; } template<ranges::forward_range R, class Proj = std::identity, std::indirect_equivalence_relation <std::projected <ranges::iterator_t <R>, Proj>> C = ranges::equal_to > requires std::permutable <ranges::iterator_t <R>> constexpr ranges::borrowed_subrange_t <R> operator()(R&& r, C comp = {}, Proj proj = {}) const { return (*this)(ranges::begin (r), ranges::end (r), std::move(comp), std::move(proj)); } }; inline constexpr unique_fn unique {};
[edit] Example
#include <algorithm> #include <cmath> #include <complex> #include <iostream> #include <vector> struct id { int i; explicit id(int i) : i {i} {} }; void print(id i, const auto& v) { std::cout << i.i << ") "; std::ranges::for_each (v, [](auto const& e) { std::cout << e << ' '; }); std::cout << '\n'; } int main() { // a vector containing several duplicated elements std::vector <int> v {1, 2, 1, 1, 3, 3, 3, 4, 5, 4}; print(id {1}, v); // remove consecutive (adjacent) duplicates const auto ret = std::ranges::unique(v); // v now holds {1 2 1 3 4 5 4 x x x}, where 'x' is indeterminate v.erase(ret.begin(), ret.end()); print(id {2}, v); // sort followed by unique, to remove all duplicates std::ranges::sort (v); // {1 1 2 3 4 4 5} print(id {3}, v); const auto [first, last] = std::ranges::unique(v.begin(), v.end()); // v now holds {1 2 3 4 5 x x}, where 'x' is indeterminate v.erase(first, last); print(id {4}, v); // unique with custom comparison and projection std::vector <std::complex <int>> vc { {1, 1}, {-1, 2}, {-2, 3}, {2, 4}, {-3, 5} }; print(id {5}, vc); const auto ret2 = std::ranges::unique(vc, // consider two complex nums equal if their real parts are equal by module: [](int x, int y) { return std::abs(x) == std::abs(y); }, // comp [](std::complex <int> z) { return z.real(); } // proj ); vc.erase(ret2.begin(), ret2.end()); print(id {6}, vc); }
Output:
1) 1 2 1 1 3 3 3 4 5 4 2) 1 2 1 3 4 5 4 3) 1 1 2 3 4 4 5 4) 1 2 3 4 5 5) (1,1) (-1,2) (-2,3) (2,4) (-3,5) 6) (1,1) (-2,3) (-3,5)
[edit] See also
(algorithm function object)[edit]
(algorithm function object)[edit]