std::ranges::binary_search
(on partitioned ranges)
std::ranges
<algorithm>
class T, class Proj = std::identity,
std::indirect_strict_weak_order
<const T*, std::projected <I, Proj>> Comp = ranges::less >
constexpr bool binary_search( I first, S last, const T& value,
class Proj = std::identity,
class T = std::projected_value_t<I, Proj>,
std::indirect_strict_weak_order
<const T*, std::projected <I, Proj>> Comp = ranges::less >
constexpr bool binary_search( I first, S last, const T& value,
class T, class Proj = std::identity,
std::indirect_strict_weak_order
<const T*, std::projected <ranges::iterator_t <R>,
Proj>> Comp = ranges::less >
constexpr bool binary_search( R&& r, const T& value,
class Proj = std::identity,
class T = std::projected_value_t<ranges::iterator_t <R>, Proj>,
std::indirect_strict_weak_order
<const T*, std::projected <ranges::iterator_t <R>,
Proj>> Comp = ranges::less >
constexpr bool binary_search( R&& r, const T& value,
[
first,
last)
.For ranges::binary_search
to succeed, the range [
first,
last)
must be at least partially ordered with respect to value, i.e. it must satisfy all of the following requirements:
A fully-sorted range meets these criteria.
The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
true if an element equal to value is found, false otherwise.
The number of comparisons and projections performed is logarithmic in the distance between first and last (at most log2(last - first) + O(1) comparisons and projections). However, for iterator-sentinel pair that does not model std::random_access_iterator , number of iterator increments is linear.
std::ranges::binary_search
doesn't return an iterator to the found element when an element whose projection equals value is found. If an iterator is desired, std::ranges::lower_bound should be used instead.
Feature-test macro | Value | Std | Feature |
---|---|---|---|
__cpp_lib_algorithm_default_value_type |
202403 |
(C++26) | List-initialization for algorithms (1,2) |
struct binary_search_fn { template<std::forward_iterator I, std::sentinel_for <I> S, class Proj = std::identity, class T = std::projected_value_t<I, Proj>, std::indirect_strict_weak_order <const T*, std::projected <I, Proj>> Comp = ranges::less > constexpr bool operator()(I first, S last, const T& value, Comp comp = {}, Proj proj = {}) const { auto x = ranges::lower_bound (first, last, value, comp, proj); return (!(x == last) && !(std::invoke (comp, value, std::invoke (proj, *x)))); } template<ranges::forward_range R, class Proj = std::identity, class T = std::projected_value_t<ranges::iterator_t <R>, Proj>, std::indirect_strict_weak_order <const T*, std::projected <ranges::iterator_t <R>, Proj>> Comp = ranges::less > constexpr bool operator()(R&& r, const T& value, Comp comp = {}, Proj proj = {}) const { return (*this)(ranges::begin (r), ranges::end (r), value, std::move(comp), std::move(proj)); } }; inline constexpr binary_search_fn binary_search;
#include <algorithm> #include <cassert> #include <complex> #include <iostream> #include <ranges> #include <vector> int main() { constexpr static auto haystack = {1, 3, 4, 5, 9}; static_assert(std::ranges::is_sorted (haystack)); for (const int needle : std::views::iota (1) | std::views::take (3)) { std::cout << "Searching for " << needle << ": "; std::ranges::binary_search(haystack, needle) ? std::cout << "found " << needle << '\n' : std::cout << "no dice!\n"; } using CD = std::complex <double>; std::vector <CD> nums{{1, 1}, {2, 3}, {4, 2}, {4, 3}}; auto cmpz = [](CD x, CD y){ return abs(x) < abs(y); }; #ifdef __cpp_lib_algorithm_default_value_type assert (std::ranges::binary_search(nums, {4, 2}, cmpz)); #else assert (std::ranges::binary_search(nums, CD{4, 2}, cmpz)); #endif }
Output:
Searching for 1: found 1 Searching for 2: no dice! Searching for 3: found 3