std::ranges::minmax, std::ranges::minmax_result
std::ranges
<algorithm>
std::indirect_strict_weak_order <
std::projected <const T*, Proj>> Comp = ranges::less >
constexpr ranges::minmax_result<const T&>
std::indirect_strict_weak_order <
std::projected <const T*, Proj>> Comp = ranges::less >
constexpr ranges::minmax_result<T>
std::indirect_strict_weak_order <
std::projected <ranges::iterator_t <R>, Proj>> Comp = ranges::less >
requires std::indirectly_copyable_storable <ranges::iterator_t <R>, ranges::range_value_t <R>*>
constexpr ranges::minmax_result<ranges::range_value_t <R>>
using minmax_result = ranges::min_max_result <T>;
Returns the smallest and the greatest of the given projected values.
The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
Contents
[edit] Parameters
[edit] Return value
s
and l
are respectively the smallest and largest values in r, according to their projected value. If several values are equivalent to the smallest and largest, returns the leftmost smallest value, and the rightmost largest value. If the range is empty (as determined by ranges::distance (r)), the behavior is undefined.[edit] Complexity
[edit] Possible implementation
struct minmax_fn { template<class T, class Proj = std::identity, std::indirect_strict_weak_order < std::projected <const T*, Proj>> Comp = ranges::less > constexpr ranges::minmax_result<const T&> operator()(const T& a, const T& b, Comp comp = {}, Proj proj = {}) const { if (std::invoke (comp, std::invoke (proj, b), std::invoke (proj, a))) return {b, a}; return {a, b}; } template<std::copyable T, class Proj = std::identity, std::indirect_strict_weak_order < std::projected <const T*, Proj>> Comp = ranges::less > constexpr ranges::minmax_result<T> operator()(std::initializer_list <T> r, Comp comp = {}, Proj proj = {}) const { auto result = ranges::minmax_element (r, std::ref (comp), std::ref (proj)); return {*result.min, *result.max}; } template<ranges::input_range R, class Proj = std::identity, std::indirect_strict_weak_order < std::projected <ranges::iterator_t <R>, Proj>> Comp = ranges::less > requires std::indirectly_copyable_storable <ranges::iterator_t <R>, ranges::range_value_t <R>*> constexpr ranges::minmax_result<ranges::range_value_t <R>> operator()(R&& r, Comp comp = {}, Proj proj = {}) const { auto result = ranges::minmax_element (r, std::ref (comp), std::ref (proj)); return {std::move(*result.min), std::move(*result.max)}; } }; inline constexpr minmax_fn minmax;
[edit] Notes
For overload (1), if one of the parameters is a temporary, the reference returned becomes a dangling reference at the end of the full expression that contains the call to minmax
:
int n = 1; auto p = std::ranges::minmax(n, n + 1); int m = p.min; // ok int x = p.max; // undefined behavior // Note that structured bindings have the same issue auto [mm, xx] = std::ranges::minmax(n, n + 1); xx; // undefined behavior
[edit] Example
#include <algorithm> #include <array> #include <iostream> #include <random> int main() { namespace ranges = std::ranges; constexpr std::array v{3, 1, 4, 1, 5, 9, 2, 6, 5}; std::random_device rd; std::mt19937_64 generator(rd()); std::uniform_int_distribution <> distribution(0, ranges::distance (v)); // [0..9] // auto bounds = ranges::minmax(distribution(generator), distribution(generator)); // UB: dangling references: bounds.min and bounds.max have the type `const int&`. const int x1 = distribution(generator); const int x2 = distribution(generator); auto bounds = ranges::minmax(x1, x2); // OK: got references to lvalues x1 and x2 std::cout << "v[" << bounds.min << ":" << bounds.max << "]: "; for (int i = bounds.min; i < bounds.max; ++i) std::cout << v[i] << ' '; std::cout << '\n'; auto [min, max] = ranges::minmax(v); std::cout << "smallest: " << min << ", " << "largest: " << max << '\n'; }
Possible output:
v[3:9]: 1 5 9 2 6 5 smallest: 1, largest: 9