std::ranges::search
std::ranges
<algorithm>
std::forward_iterator I2, std::sentinel_for <I2> S2,
class Pred = ranges::equal_to,
class Proj1 = std::identity,
class Proj2 = std::identity >
requires std::indirectly_comparable <I1, I2, Pred, Proj1, Proj2>
constexpr ranges::subrange <I1>
search( I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {},
class Pred = ranges::equal_to,
class Proj1 = std::identity,
class Proj2 = std::identity >
requires std::indirectly_comparable <ranges::iterator_t <R1>,
ranges::iterator_t <R2>, Pred, Proj1, Proj2>
constexpr ranges::borrowed_subrange_t <R1>
[
first2,
last2)
in the range [
first1,
last1)
. Elements are compared using binary predicate pred after being projected with proj2 and proj1, respectively.The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
[edit] Parameters
[edit] Return value
[
first2,
last2)
(aka needle) in the range [
first1,
last1)
(aka haystack), after application of the projections proj1 and proj2 to the elements of both sequences respectively with consequencing application of the binary predicate pred to compare projected elements.
If no such occurrence is found, ranges::subrange {last1, last1} is returned.
If the range to search for (aka needle) is empty, that is first2 == last2, then the ranges::subrange {first1, first1} is returned.[edit] Complexity
At most S * N
applications of the corresponding predicate and each projection, where
(1) S = ranges::distance (first2, last2) and N = ranges::distance (first1, last1);
(2) S = ranges::distance (r2) and N = ranges::distance (r1).
[edit] Possible implementation
struct search_fn { template<std::forward_iterator I1, std::sentinel_for <I1> S1, std::forward_iterator I2, std::sentinel_for <I2> S2, class Pred = ranges::equal_to, class Proj1 = std::identity, class Proj2 = std::identity > requires std::indirectly_comparable <I1, I2, Pred, Proj1, Proj2> constexpr ranges::subrange <I1> operator()(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) const { for (;; ++first1) { I1 it1 = first1; for (I2 it2 = first2;; ++it1, ++it2) { if (it2 == last2) return {first1, it1}; if (it1 == last1) return {it1, it1}; if (!std::invoke (pred, std::invoke (proj1, *it1), std::invoke (proj2, *it2))) break; } } } template<ranges::forward_range R1, ranges::forward_range R2, class Pred = ranges::equal_to, class Proj1 = std::identity, class Proj2 = std::identity > requires std::indirectly_comparable <ranges::iterator_t <R1>, ranges::iterator_t <R2>, Pred, Proj1, Proj2> constexpr ranges::borrowed_subrange_t <R1> operator()(R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) const { return (*this)(ranges::begin (r1), ranges::end (r1), ranges::begin (r2), ranges::end (r2), std::move(pred), std::move(proj1), std::move(proj2)); } }; inline constexpr search_fn search {};
[edit] Example
#include <algorithm> #include <cctype> #include <iostream> #include <iterator> #include <string_view> using namespace std::literals; void print(int id, const auto& haystack, const auto& needle, const auto& found) { std::cout << id << ") search(\"" << haystack << "\", \"" << needle << "\"); "; const auto first = std::distance (haystack.begin(), found.begin()); const auto last = std::distance (haystack.begin(), found.end()); if (found.empty()) std::cout << "not found;"; else { std::cout << "found: \""; for (const auto x : found) std::cout << x; std::cout << "\";"; } std::cout << " subrange: {" << first << ", " << last << "}\n"; } int main() { constexpr auto haystack {"abcd abcd"sv}; constexpr auto needle {"bcd"sv}; // the search uses iterator pairs begin()/end(): constexpr auto found1 = std::ranges::search( haystack.begin(), haystack.end(), needle.begin(), needle.end()); print(1, haystack, needle, found1); // the search uses ranges r1, r2: constexpr auto found2 = std::ranges::search(haystack, needle); print(2, haystack, needle, found2); // 'needle' range is empty: constexpr auto none {""sv}; constexpr auto found3 = std::ranges::search(haystack, none); print(3, haystack, none, found3); // 'needle' will not be found: constexpr auto awl {"efg"sv}; constexpr auto found4 = std::ranges::search(haystack, awl); print(4, haystack, awl, found4); // the search uses custom comparator and projections: constexpr auto bodkin {"234"sv}; auto found5 = std::ranges::search(haystack, bodkin, [](const int x, const int y) { return x == y; }, // pred [](const int x) { return std::toupper (x); }, // proj1 [](const int y) { return y + 'A' - '1'; }); // proj2 print(5, haystack, bodkin, found5); }
Output:
1) search("abcd abcd", "bcd"); found: "bcd"; subrange: {1, 4} 2) search("abcd abcd", "bcd"); found: "bcd"; subrange: {1, 4} 3) search("abcd abcd", ""); not found; subrange: {0, 0} 4) search("abcd abcd", "efg"); not found; subrange: {9, 9} 5) search("abcd abcd", "234"); found: "bcd"; subrange: {1, 4}
[edit] See also
(algorithm function object)[edit]
(algorithm function object)[edit]
(algorithm function object)[edit]
(algorithm function object)[edit]