edgeR
This package is for version 3.16 of Bioconductor; for the stable, up-to-date release version, see edgeR.
Empirical Analysis of Digital Gene Expression Data in R
Bioconductor version: 3.16
Differential expression analysis of RNA-seq expression profiles with biological replication. Implements a range of statistical methodology based on the negative binomial distributions, including empirical Bayes estimation, exact tests, generalized linear models and quasi-likelihood tests. As well as RNA-seq, it be applied to differential signal analysis of other types of genomic data that produce read counts, including ChIP-seq, ATAC-seq, Bisulfite-seq, SAGE and CAGE.
Author: Yunshun Chen, Aaron TL Lun, Davis J McCarthy, Matthew E Ritchie, Belinda Phipson, Yifang Hu, Xiaobei Zhou, Mark D Robinson, Gordon K Smyth
Maintainer: Yunshun Chen <yuchen at wehi.edu.au>, Gordon Smyth <smyth at wehi.edu.au>, Aaron Lun <infinite.monkeys.with.keyboards at gmail.com>, Mark Robinson <mark.robinson at imls.uzh.ch>
citation("edgeR")):
Installation
To install this package, start R (version "4.2") and enter:
if (!require("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("edgeR")
For older versions of R, please refer to the appropriate Bioconductor release.
Documentation
To view documentation for the version of this package installed in your system, start R and enter:
browseVignettes("edgeR")
Details
See More
Package Archives
Follow Installation instructions to use this package in your R session.