publicfinalclass SmoothGradConfigextendsGeneratedMessageV3implementsSmoothGradConfigOrBuilder
Config for SmoothGrad approximation of gradients.
When enabled, the gradients are approximated by averaging the gradients from
noisy samples in the vicinity of the inputs. Adding noise can help improve
the computed gradients. Refer to this paper for more details:
https://arxiv.org/pdf/1706.03825.pdf
Protobuf type google.cloud.vertexai.v1.SmoothGradConfig
Inherited Members
com.google.protobuf.GeneratedMessageV3.<ListT>makeMutableCopy(ListT)
com.google.protobuf.GeneratedMessageV3.<ListT>makeMutableCopy(ListT,int)
com.google.protobuf.GeneratedMessageV3.<T>emptyList(java.lang.Class<T>)
com.google.protobuf.GeneratedMessageV3.internalGetMapFieldReflection(int)
Static Fields
FEATURE_NOISE_SIGMA_FIELD_NUMBER
publicstaticfinalintFEATURE_NOISE_SIGMA_FIELD_NUMBER
| Field Value |
| Type |
Description |
int |
NOISE_SIGMA_FIELD_NUMBER
publicstaticfinalintNOISE_SIGMA_FIELD_NUMBER
| Field Value |
| Type |
Description |
int |
NOISY_SAMPLE_COUNT_FIELD_NUMBER
publicstaticfinalintNOISY_SAMPLE_COUNT_FIELD_NUMBER
| Field Value |
| Type |
Description |
int |
Static Methods
getDefaultInstance()
publicstaticSmoothGradConfiggetDefaultInstance()
getDescriptor()
publicstaticfinalDescriptors.DescriptorgetDescriptor()
newBuilder()
publicstaticSmoothGradConfig.BuildernewBuilder()
newBuilder(SmoothGradConfig prototype)
publicstaticSmoothGradConfig.BuildernewBuilder(SmoothGradConfigprototype)
publicstaticSmoothGradConfigparseDelimitedFrom(InputStreaminput)
publicstaticSmoothGradConfigparseDelimitedFrom(InputStreaminput,ExtensionRegistryLiteextensionRegistry)
parseFrom(byte[] data)
publicstaticSmoothGradConfigparseFrom(byte[]data)
| Parameter |
| Name |
Description |
data |
byte[]
|
parseFrom(byte[] data, ExtensionRegistryLite extensionRegistry)
publicstaticSmoothGradConfigparseFrom(byte[]data,ExtensionRegistryLiteextensionRegistry)
parseFrom(ByteString data)
publicstaticSmoothGradConfigparseFrom(ByteStringdata)
parseFrom(ByteString data, ExtensionRegistryLite extensionRegistry)
publicstaticSmoothGradConfigparseFrom(ByteStringdata,ExtensionRegistryLiteextensionRegistry)
publicstaticSmoothGradConfigparseFrom(CodedInputStreaminput)
publicstaticSmoothGradConfigparseFrom(CodedInputStreaminput,ExtensionRegistryLiteextensionRegistry)
publicstaticSmoothGradConfigparseFrom(InputStreaminput)
publicstaticSmoothGradConfigparseFrom(InputStreaminput,ExtensionRegistryLiteextensionRegistry)
parseFrom(ByteBuffer data)
publicstaticSmoothGradConfigparseFrom(ByteBufferdata)
parseFrom(ByteBuffer data, ExtensionRegistryLite extensionRegistry)
publicstaticSmoothGradConfigparseFrom(ByteBufferdata,ExtensionRegistryLiteextensionRegistry)
parser()
publicstaticParser<SmoothGradConfig>parser()
Methods
equals(Object obj)
publicbooleanequals(Objectobj)
| Parameter |
| Name |
Description |
obj |
Object
|
Overrides
getDefaultInstanceForType()
publicSmoothGradConfiggetDefaultInstanceForType()
getFeatureNoiseSigma()
publicFeatureNoiseSigmagetFeatureNoiseSigma()
This is similar to
noise_sigma,
but provides additional flexibility. A separate noise sigma can be
provided for each feature, which is useful if their distributions are
different. No noise is added to features that are not set. If this field
is unset,
noise_sigma
will be used for all features.
.google.cloud.vertexai.v1.FeatureNoiseSigma feature_noise_sigma = 2;
getFeatureNoiseSigmaOrBuilder()
publicFeatureNoiseSigmaOrBuildergetFeatureNoiseSigmaOrBuilder()
This is similar to
noise_sigma,
but provides additional flexibility. A separate noise sigma can be
provided for each feature, which is useful if their distributions are
different. No noise is added to features that are not set. If this field
is unset,
noise_sigma
will be used for all features.
.google.cloud.vertexai.v1.FeatureNoiseSigma feature_noise_sigma = 2;
getGradientNoiseSigmaCase()
publicSmoothGradConfig.GradientNoiseSigmaCasegetGradientNoiseSigmaCase()
getNoiseSigma()
publicfloatgetNoiseSigma()
This is a single float value and will be used to add noise to all the
features. Use this field when all features are normalized to have the
same distribution: scale to range [0, 1], [-1, 1] or z-scoring, where
features are normalized to have 0-mean and 1-variance. Learn more about
normalization.
For best results the recommended value is about 10% - 20% of the standard
deviation of the input feature. Refer to section 3.2 of the SmoothGrad
paper: https://arxiv.org/pdf/1706.03825.pdf. Defaults to 0.1.
If the distribution is different per feature, set
feature_noise_sigma
instead for each feature.
float noise_sigma = 1;
| Returns |
| Type |
Description |
float |
The noiseSigma.
|
getNoisySampleCount()
publicintgetNoisySampleCount()
The number of gradient samples to use for
approximation. The higher this number, the more accurate the gradient
is, but the runtime complexity increases by this factor as well.
Valid range of its value is [1, 50]. Defaults to 3.
int32 noisy_sample_count = 3;
| Returns |
| Type |
Description |
int |
The noisySampleCount.
|
getParserForType()
publicParser<SmoothGradConfig>getParserForType()
Overrides
getSerializedSize()
publicintgetSerializedSize()
| Returns |
| Type |
Description |
int |
Overrides
hasFeatureNoiseSigma()
publicbooleanhasFeatureNoiseSigma()
This is similar to
noise_sigma,
but provides additional flexibility. A separate noise sigma can be
provided for each feature, which is useful if their distributions are
different. No noise is added to features that are not set. If this field
is unset,
noise_sigma
will be used for all features.
.google.cloud.vertexai.v1.FeatureNoiseSigma feature_noise_sigma = 2;
| Returns |
| Type |
Description |
boolean |
Whether the featureNoiseSigma field is set.
|
hasNoiseSigma()
publicbooleanhasNoiseSigma()
This is a single float value and will be used to add noise to all the
features. Use this field when all features are normalized to have the
same distribution: scale to range [0, 1], [-1, 1] or z-scoring, where
features are normalized to have 0-mean and 1-variance. Learn more about
normalization.
For best results the recommended value is about 10% - 20% of the standard
deviation of the input feature. Refer to section 3.2 of the SmoothGrad
paper: https://arxiv.org/pdf/1706.03825.pdf. Defaults to 0.1.
If the distribution is different per feature, set
feature_noise_sigma
instead for each feature.
float noise_sigma = 1;
| Returns |
| Type |
Description |
boolean |
Whether the noiseSigma field is set.
|
hashCode()
| Returns |
| Type |
Description |
int |
Overrides
internalGetFieldAccessorTable()
protectedGeneratedMessageV3.FieldAccessorTableinternalGetFieldAccessorTable()
Overrides
isInitialized()
publicfinalbooleanisInitialized()
Overrides
newBuilderForType()
publicSmoothGradConfig.BuildernewBuilderForType()
newBuilderForType(GeneratedMessageV3.BuilderParent parent)
protectedSmoothGradConfig.BuildernewBuilderForType(GeneratedMessageV3.BuilderParentparent)
Overrides
newInstance(GeneratedMessageV3.UnusedPrivateParameter unused)
protectedObjectnewInstance(GeneratedMessageV3.UnusedPrivateParameterunused)
| Returns |
| Type |
Description |
Object |
Overrides
toBuilder()
publicSmoothGradConfig.BuildertoBuilder()
writeTo(CodedOutputStream output)
publicvoidwriteTo(CodedOutputStreamoutput)
Overrides