publicfinalclass ExplanationMetadataextendsGeneratedMessageV3implementsExplanationMetadataOrBuilder
Metadata describing the Model's input and output for explanation.
Protobuf type google.cloud.vertexai.v1.ExplanationMetadata
Inherited Members
com.google.protobuf.GeneratedMessageV3.<ListT>makeMutableCopy(ListT)
com.google.protobuf.GeneratedMessageV3.<ListT>makeMutableCopy(ListT,int)
com.google.protobuf.GeneratedMessageV3.<T>emptyList(java.lang.Class<T>)
com.google.protobuf.GeneratedMessageV3.internalGetMapFieldReflection(int)
Static Fields
publicstaticfinalintFEATURE_ATTRIBUTIONS_SCHEMA_URI_FIELD_NUMBER
| Field Value |
| Type |
Description |
int |
publicstaticfinalintINPUTS_FIELD_NUMBER
| Field Value |
| Type |
Description |
int |
publicstaticfinalintLATENT_SPACE_SOURCE_FIELD_NUMBER
| Field Value |
| Type |
Description |
int |
publicstaticfinalintOUTPUTS_FIELD_NUMBER
| Field Value |
| Type |
Description |
int |
Static Methods
publicstaticExplanationMetadatagetDefaultInstance()
publicstaticfinalDescriptors.DescriptorgetDescriptor()
publicstaticExplanationMetadata.BuildernewBuilder()
publicstaticExplanationMetadata.BuildernewBuilder(ExplanationMetadataprototype)
publicstaticExplanationMetadataparseDelimitedFrom(InputStreaminput)
publicstaticExplanationMetadataparseDelimitedFrom(InputStreaminput,ExtensionRegistryLiteextensionRegistry)
publicstaticExplanationMetadataparseFrom(byte[]data)
| Parameter |
| Name |
Description |
data |
byte[]
|
publicstaticExplanationMetadataparseFrom(byte[]data,ExtensionRegistryLiteextensionRegistry)
publicstaticExplanationMetadataparseFrom(ByteStringdata)
publicstaticExplanationMetadataparseFrom(ByteStringdata,ExtensionRegistryLiteextensionRegistry)
publicstaticExplanationMetadataparseFrom(CodedInputStreaminput)
publicstaticExplanationMetadataparseFrom(CodedInputStreaminput,ExtensionRegistryLiteextensionRegistry)
publicstaticExplanationMetadataparseFrom(InputStreaminput)
publicstaticExplanationMetadataparseFrom(InputStreaminput,ExtensionRegistryLiteextensionRegistry)
publicstaticExplanationMetadataparseFrom(ByteBufferdata)
publicstaticExplanationMetadataparseFrom(ByteBufferdata,ExtensionRegistryLiteextensionRegistry)
publicstaticParser<ExplanationMetadata>parser()
Methods
publicbooleancontainsInputs(Stringkey)
Required. Map from feature names to feature input metadata. Keys are the
name of the features. Values are the specification of the feature.
An empty InputMetadata is valid. It describes a text feature which has the
name specified as the key in
ExplanationMetadata.inputs.
The baseline of the empty feature is chosen by Vertex AI.
For Vertex AI-provided Tensorflow images, the key can be any friendly
name of the feature. Once specified,
featureAttributions
are keyed by this key (if not grouped with another feature).
For custom images, the key must match with the key in
instance.
map<string, .google.cloud.vertexai.v1.ExplanationMetadata.InputMetadata> inputs = 1 [(.google.api.field_behavior) = REQUIRED];
| Parameter |
| Name |
Description |
key |
String
|
publicbooleancontainsOutputs(Stringkey)
Required. Map from output names to output metadata.
For Vertex AI-provided Tensorflow images, keys can be any user defined
string that consists of any UTF-8 characters.
For custom images, keys are the name of the output field in the prediction
to be explained.
Currently only one key is allowed.
map<string, .google.cloud.vertexai.v1.ExplanationMetadata.OutputMetadata> outputs = 2 [(.google.api.field_behavior) = REQUIRED];
| Parameter |
| Name |
Description |
key |
String
|
publicbooleanequals(Objectobj)
| Parameter |
| Name |
Description |
obj |
Object
|
Overrides
publicExplanationMetadatagetDefaultInstanceForType()
publicStringgetFeatureAttributionsSchemaUri()
Points to a YAML file stored on Google Cloud Storage describing the format
of the feature
attributions.
The schema is defined as an OpenAPI 3.0.2 Schema
Object.
AutoML tabular Models always have this field populated by Vertex AI.
Note: The URI given on output may be different, including the URI scheme,
than the one given on input. The output URI will point to a location where
the user only has a read access.
string feature_attributions_schema_uri = 3;
| Returns |
| Type |
Description |
String |
The featureAttributionsSchemaUri.
|
publicByteStringgetFeatureAttributionsSchemaUriBytes()
Points to a YAML file stored on Google Cloud Storage describing the format
of the feature
attributions.
The schema is defined as an OpenAPI 3.0.2 Schema
Object.
AutoML tabular Models always have this field populated by Vertex AI.
Note: The URI given on output may be different, including the URI scheme,
than the one given on input. The output URI will point to a location where
the user only has a read access.
string feature_attributions_schema_uri = 3;
| Returns |
| Type |
Description |
ByteString |
The bytes for featureAttributionsSchemaUri.
|
publicMap<String,ExplanationMetadata.InputMetadata>getInputs()
publicintgetInputsCount()
Required. Map from feature names to feature input metadata. Keys are the
name of the features. Values are the specification of the feature.
An empty InputMetadata is valid. It describes a text feature which has the
name specified as the key in
ExplanationMetadata.inputs.
The baseline of the empty feature is chosen by Vertex AI.
For Vertex AI-provided Tensorflow images, the key can be any friendly
name of the feature. Once specified,
featureAttributions
are keyed by this key (if not grouped with another feature).
For custom images, the key must match with the key in
instance.
map<string, .google.cloud.vertexai.v1.ExplanationMetadata.InputMetadata> inputs = 1 [(.google.api.field_behavior) = REQUIRED];
| Returns |
| Type |
Description |
int |
publicMap<String,ExplanationMetadata.InputMetadata>getInputsMap()
Required. Map from feature names to feature input metadata. Keys are the
name of the features. Values are the specification of the feature.
An empty InputMetadata is valid. It describes a text feature which has the
name specified as the key in
ExplanationMetadata.inputs.
The baseline of the empty feature is chosen by Vertex AI.
For Vertex AI-provided Tensorflow images, the key can be any friendly
name of the feature. Once specified,
featureAttributions
are keyed by this key (if not grouped with another feature).
For custom images, the key must match with the key in
instance.
map<string, .google.cloud.vertexai.v1.ExplanationMetadata.InputMetadata> inputs = 1 [(.google.api.field_behavior) = REQUIRED];
publicExplanationMetadata.InputMetadatagetInputsOrDefault(Stringkey,ExplanationMetadata.InputMetadatadefaultValue)
Required. Map from feature names to feature input metadata. Keys are the
name of the features. Values are the specification of the feature.
An empty InputMetadata is valid. It describes a text feature which has the
name specified as the key in
ExplanationMetadata.inputs.
The baseline of the empty feature is chosen by Vertex AI.
For Vertex AI-provided Tensorflow images, the key can be any friendly
name of the feature. Once specified,
featureAttributions
are keyed by this key (if not grouped with another feature).
For custom images, the key must match with the key in
instance.
map<string, .google.cloud.vertexai.v1.ExplanationMetadata.InputMetadata> inputs = 1 [(.google.api.field_behavior) = REQUIRED];
publicExplanationMetadata.InputMetadatagetInputsOrThrow(Stringkey)
Required. Map from feature names to feature input metadata. Keys are the
name of the features. Values are the specification of the feature.
An empty InputMetadata is valid. It describes a text feature which has the
name specified as the key in
ExplanationMetadata.inputs.
The baseline of the empty feature is chosen by Vertex AI.
For Vertex AI-provided Tensorflow images, the key can be any friendly
name of the feature. Once specified,
featureAttributions
are keyed by this key (if not grouped with another feature).
For custom images, the key must match with the key in
instance.
map<string, .google.cloud.vertexai.v1.ExplanationMetadata.InputMetadata> inputs = 1 [(.google.api.field_behavior) = REQUIRED];
| Parameter |
| Name |
Description |
key |
String
|
publicStringgetLatentSpaceSource()
Name of the source to generate embeddings for example based explanations.
string latent_space_source = 5;
| Returns |
| Type |
Description |
String |
The latentSpaceSource.
|
publicByteStringgetLatentSpaceSourceBytes()
Name of the source to generate embeddings for example based explanations.
string latent_space_source = 5;
| Returns |
| Type |
Description |
ByteString |
The bytes for latentSpaceSource.
|
publicMap<String,ExplanationMetadata.OutputMetadata>getOutputs()
publicintgetOutputsCount()
Required. Map from output names to output metadata.
For Vertex AI-provided Tensorflow images, keys can be any user defined
string that consists of any UTF-8 characters.
For custom images, keys are the name of the output field in the prediction
to be explained.
Currently only one key is allowed.
map<string, .google.cloud.vertexai.v1.ExplanationMetadata.OutputMetadata> outputs = 2 [(.google.api.field_behavior) = REQUIRED];
| Returns |
| Type |
Description |
int |
publicMap<String,ExplanationMetadata.OutputMetadata>getOutputsMap()
Required. Map from output names to output metadata.
For Vertex AI-provided Tensorflow images, keys can be any user defined
string that consists of any UTF-8 characters.
For custom images, keys are the name of the output field in the prediction
to be explained.
Currently only one key is allowed.
map<string, .google.cloud.vertexai.v1.ExplanationMetadata.OutputMetadata> outputs = 2 [(.google.api.field_behavior) = REQUIRED];
publicExplanationMetadata.OutputMetadatagetOutputsOrDefault(Stringkey,ExplanationMetadata.OutputMetadatadefaultValue)
Required. Map from output names to output metadata.
For Vertex AI-provided Tensorflow images, keys can be any user defined
string that consists of any UTF-8 characters.
For custom images, keys are the name of the output field in the prediction
to be explained.
Currently only one key is allowed.
map<string, .google.cloud.vertexai.v1.ExplanationMetadata.OutputMetadata> outputs = 2 [(.google.api.field_behavior) = REQUIRED];
publicExplanationMetadata.OutputMetadatagetOutputsOrThrow(Stringkey)
Required. Map from output names to output metadata.
For Vertex AI-provided Tensorflow images, keys can be any user defined
string that consists of any UTF-8 characters.
For custom images, keys are the name of the output field in the prediction
to be explained.
Currently only one key is allowed.
map<string, .google.cloud.vertexai.v1.ExplanationMetadata.OutputMetadata> outputs = 2 [(.google.api.field_behavior) = REQUIRED];
| Parameter |
| Name |
Description |
key |
String
|
publicParser<ExplanationMetadata>getParserForType()
Overrides
publicintgetSerializedSize()
| Returns |
| Type |
Description |
int |
Overrides
| Returns |
| Type |
Description |
int |
Overrides
protectedGeneratedMessageV3.FieldAccessorTableinternalGetFieldAccessorTable()
Overrides
protectedMapFieldinternalGetMapField(intnumber)
| Parameter |
| Name |
Description |
number |
int
|
Overrides
publicfinalbooleanisInitialized()
Overrides
publicExplanationMetadata.BuildernewBuilderForType()
protectedExplanationMetadata.BuildernewBuilderForType(GeneratedMessageV3.BuilderParentparent)
Overrides
protectedObjectnewInstance(GeneratedMessageV3.UnusedPrivateParameterunused)
| Returns |
| Type |
Description |
Object |
Overrides
publicExplanationMetadata.BuildertoBuilder()
publicvoidwriteTo(CodedOutputStreamoutput)
Overrides