Interface ModelExplanationOrBuilder (0.4.0)

publicinterface ModelExplanationOrBuilderextendsMessageOrBuilder

Implements

MessageOrBuilder

Methods

getMeanAttributions(int index)

publicabstractAttributiongetMeanAttributions(intindex)

Output only. Aggregated attributions explaining the Model's prediction outputs over the set of instances. The attributions are grouped by outputs.

For Models that predict only one output, such as regression Models that predict only one score, there is only one attibution that explains the predicted output. For Models that predict multiple outputs, such as multiclass Models that predict multiple classes, each element explains one specific item. Attribution.output_index can be used to identify which output this attribution is explaining.

The baselineOutputValue, instanceOutputValue and featureAttributions fields are averaged over the test data.

NOTE: Currently AutoML tabular classification Models produce only one attribution, which averages attributions over all the classes it predicts. Attribution.approximation_error is not populated.

repeated .google.cloud.vertexai.v1.Attribution mean_attributions = 1 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
Name Description
index int
Returns
Type Description
Attribution

getMeanAttributionsCount()

publicabstractintgetMeanAttributionsCount()

Output only. Aggregated attributions explaining the Model's prediction outputs over the set of instances. The attributions are grouped by outputs.

For Models that predict only one output, such as regression Models that predict only one score, there is only one attibution that explains the predicted output. For Models that predict multiple outputs, such as multiclass Models that predict multiple classes, each element explains one specific item. Attribution.output_index can be used to identify which output this attribution is explaining.

The baselineOutputValue, instanceOutputValue and featureAttributions fields are averaged over the test data.

NOTE: Currently AutoML tabular classification Models produce only one attribution, which averages attributions over all the classes it predicts. Attribution.approximation_error is not populated.

repeated .google.cloud.vertexai.v1.Attribution mean_attributions = 1 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
Type Description
int

getMeanAttributionsList()

publicabstractList<Attribution>getMeanAttributionsList()

Output only. Aggregated attributions explaining the Model's prediction outputs over the set of instances. The attributions are grouped by outputs.

For Models that predict only one output, such as regression Models that predict only one score, there is only one attibution that explains the predicted output. For Models that predict multiple outputs, such as multiclass Models that predict multiple classes, each element explains one specific item. Attribution.output_index can be used to identify which output this attribution is explaining.

The baselineOutputValue, instanceOutputValue and featureAttributions fields are averaged over the test data.

NOTE: Currently AutoML tabular classification Models produce only one attribution, which averages attributions over all the classes it predicts. Attribution.approximation_error is not populated.

repeated .google.cloud.vertexai.v1.Attribution mean_attributions = 1 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
Type Description
List<Attribution>

getMeanAttributionsOrBuilder(int index)

publicabstractAttributionOrBuildergetMeanAttributionsOrBuilder(intindex)

Output only. Aggregated attributions explaining the Model's prediction outputs over the set of instances. The attributions are grouped by outputs.

For Models that predict only one output, such as regression Models that predict only one score, there is only one attibution that explains the predicted output. For Models that predict multiple outputs, such as multiclass Models that predict multiple classes, each element explains one specific item. Attribution.output_index can be used to identify which output this attribution is explaining.

The baselineOutputValue, instanceOutputValue and featureAttributions fields are averaged over the test data.

NOTE: Currently AutoML tabular classification Models produce only one attribution, which averages attributions over all the classes it predicts. Attribution.approximation_error is not populated.

repeated .google.cloud.vertexai.v1.Attribution mean_attributions = 1 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
Name Description
index int
Returns
Type Description
AttributionOrBuilder

getMeanAttributionsOrBuilderList()

publicabstractList<?extendsAttributionOrBuilder>getMeanAttributionsOrBuilderList()

Output only. Aggregated attributions explaining the Model's prediction outputs over the set of instances. The attributions are grouped by outputs.

For Models that predict only one output, such as regression Models that predict only one score, there is only one attibution that explains the predicted output. For Models that predict multiple outputs, such as multiclass Models that predict multiple classes, each element explains one specific item. Attribution.output_index can be used to identify which output this attribution is explaining.

The baselineOutputValue, instanceOutputValue and featureAttributions fields are averaged over the test data.

NOTE: Currently AutoML tabular classification Models produce only one attribution, which averages attributions over all the classes it predicts. Attribution.approximation_error is not populated.

repeated .google.cloud.vertexai.v1.Attribution mean_attributions = 1 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
Type Description
List<? extends com.google.cloud.vertexai.api.AttributionOrBuilder>

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2025年11月19日 UTC.