Class IntegratedGradientsAttribution.Builder (0.4.0)
Stay organized with collections
Save and categorize content based on your preferences.
publicstaticfinalclass IntegratedGradientsAttribution.BuilderextendsGeneratedMessageV3.Builder<IntegratedGradientsAttribution.Builder>implementsIntegratedGradientsAttributionOrBuilderAn attribution method that computes the Aumann-Shapley value taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
Protobuf type google.cloud.vertexai.v1.IntegratedGradientsAttribution
Inheritance
Object > AbstractMessageLite.Builder<MessageType,BuilderType> > AbstractMessage.Builder<BuilderType> > GeneratedMessageV3.Builder > IntegratedGradientsAttribution.BuilderImplements
IntegratedGradientsAttributionOrBuilderInherited Members
Static Methods
getDescriptor()
publicstaticfinalDescriptors.DescriptorgetDescriptor()| Returns | |
|---|---|
| Type | Description |
Descriptor |
|
Methods
addRepeatedField(Descriptors.FieldDescriptor field, Object value)
publicIntegratedGradientsAttribution.BuilderaddRepeatedField(Descriptors.FieldDescriptorfield,Objectvalue)| Parameters | |
|---|---|
| Name | Description |
field |
FieldDescriptor |
value |
Object |
| Returns | |
|---|---|
| Type | Description |
IntegratedGradientsAttribution.Builder |
|
build()
publicIntegratedGradientsAttributionbuild()| Returns | |
|---|---|
| Type | Description |
IntegratedGradientsAttribution |
|
buildPartial()
publicIntegratedGradientsAttributionbuildPartial()| Returns | |
|---|---|
| Type | Description |
IntegratedGradientsAttribution |
|
clear()
publicIntegratedGradientsAttribution.Builderclear()| Returns | |
|---|---|
| Type | Description |
IntegratedGradientsAttribution.Builder |
|
clearBlurBaselineConfig()
publicIntegratedGradientsAttribution.BuilderclearBlurBaselineConfig()Config for IG with blur baseline.
When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383
.google.cloud.vertexai.v1.BlurBaselineConfig blur_baseline_config = 3;
| Returns | |
|---|---|
| Type | Description |
IntegratedGradientsAttribution.Builder |
|
clearField(Descriptors.FieldDescriptor field)
publicIntegratedGradientsAttribution.BuilderclearField(Descriptors.FieldDescriptorfield)| Parameter | |
|---|---|
| Name | Description |
field |
FieldDescriptor |
| Returns | |
|---|---|
| Type | Description |
IntegratedGradientsAttribution.Builder |
|
clearOneof(Descriptors.OneofDescriptor oneof)
publicIntegratedGradientsAttribution.BuilderclearOneof(Descriptors.OneofDescriptoroneof)| Parameter | |
|---|---|
| Name | Description |
oneof |
OneofDescriptor |
| Returns | |
|---|---|
| Type | Description |
IntegratedGradientsAttribution.Builder |
|
clearSmoothGradConfig()
publicIntegratedGradientsAttribution.BuilderclearSmoothGradConfig()Config for SmoothGrad approximation of gradients.
When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf
.google.cloud.vertexai.v1.SmoothGradConfig smooth_grad_config = 2;
| Returns | |
|---|---|
| Type | Description |
IntegratedGradientsAttribution.Builder |
|
clearStepCount()
publicIntegratedGradientsAttribution.BuilderclearStepCount()Required. The number of steps for approximating the path integral. A good value to start is 50 and gradually increase until the sum to diff property is within the desired error range.
Valid range of its value is [1, 100], inclusively.
int32 step_count = 1 [(.google.api.field_behavior) = REQUIRED];
| Returns | |
|---|---|
| Type | Description |
IntegratedGradientsAttribution.Builder |
This builder for chaining. |
clone()
publicIntegratedGradientsAttribution.Builderclone()| Returns | |
|---|---|
| Type | Description |
IntegratedGradientsAttribution.Builder |
|
getBlurBaselineConfig()
publicBlurBaselineConfiggetBlurBaselineConfig()Config for IG with blur baseline.
When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383
.google.cloud.vertexai.v1.BlurBaselineConfig blur_baseline_config = 3;
| Returns | |
|---|---|
| Type | Description |
BlurBaselineConfig |
The blurBaselineConfig. |
getBlurBaselineConfigBuilder()
publicBlurBaselineConfig.BuildergetBlurBaselineConfigBuilder()Config for IG with blur baseline.
When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383
.google.cloud.vertexai.v1.BlurBaselineConfig blur_baseline_config = 3;
| Returns | |
|---|---|
| Type | Description |
BlurBaselineConfig.Builder |
|
getBlurBaselineConfigOrBuilder()
publicBlurBaselineConfigOrBuildergetBlurBaselineConfigOrBuilder()Config for IG with blur baseline.
When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383
.google.cloud.vertexai.v1.BlurBaselineConfig blur_baseline_config = 3;
| Returns | |
|---|---|
| Type | Description |
BlurBaselineConfigOrBuilder |
|
getDefaultInstanceForType()
publicIntegratedGradientsAttributiongetDefaultInstanceForType()| Returns | |
|---|---|
| Type | Description |
IntegratedGradientsAttribution |
|
getDescriptorForType()
publicDescriptors.DescriptorgetDescriptorForType()| Returns | |
|---|---|
| Type | Description |
Descriptor |
|
getSmoothGradConfig()
publicSmoothGradConfiggetSmoothGradConfig()Config for SmoothGrad approximation of gradients.
When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf
.google.cloud.vertexai.v1.SmoothGradConfig smooth_grad_config = 2;
| Returns | |
|---|---|
| Type | Description |
SmoothGradConfig |
The smoothGradConfig. |
getSmoothGradConfigBuilder()
publicSmoothGradConfig.BuildergetSmoothGradConfigBuilder()Config for SmoothGrad approximation of gradients.
When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf
.google.cloud.vertexai.v1.SmoothGradConfig smooth_grad_config = 2;
| Returns | |
|---|---|
| Type | Description |
SmoothGradConfig.Builder |
|
getSmoothGradConfigOrBuilder()
publicSmoothGradConfigOrBuildergetSmoothGradConfigOrBuilder()Config for SmoothGrad approximation of gradients.
When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf
.google.cloud.vertexai.v1.SmoothGradConfig smooth_grad_config = 2;
| Returns | |
|---|---|
| Type | Description |
SmoothGradConfigOrBuilder |
|
getStepCount()
publicintgetStepCount()Required. The number of steps for approximating the path integral. A good value to start is 50 and gradually increase until the sum to diff property is within the desired error range.
Valid range of its value is [1, 100], inclusively.
int32 step_count = 1 [(.google.api.field_behavior) = REQUIRED];
| Returns | |
|---|---|
| Type | Description |
int |
The stepCount. |
hasBlurBaselineConfig()
publicbooleanhasBlurBaselineConfig()Config for IG with blur baseline.
When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383
.google.cloud.vertexai.v1.BlurBaselineConfig blur_baseline_config = 3;
| Returns | |
|---|---|
| Type | Description |
boolean |
Whether the blurBaselineConfig field is set. |
hasSmoothGradConfig()
publicbooleanhasSmoothGradConfig()Config for SmoothGrad approximation of gradients.
When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf
.google.cloud.vertexai.v1.SmoothGradConfig smooth_grad_config = 2;
| Returns | |
|---|---|
| Type | Description |
boolean |
Whether the smoothGradConfig field is set. |
internalGetFieldAccessorTable()
protectedGeneratedMessageV3.FieldAccessorTableinternalGetFieldAccessorTable()| Returns | |
|---|---|
| Type | Description |
FieldAccessorTable |
|
isInitialized()
publicfinalbooleanisInitialized()| Returns | |
|---|---|
| Type | Description |
boolean |
|
mergeBlurBaselineConfig(BlurBaselineConfig value)
publicIntegratedGradientsAttribution.BuildermergeBlurBaselineConfig(BlurBaselineConfigvalue)Config for IG with blur baseline.
When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383
.google.cloud.vertexai.v1.BlurBaselineConfig blur_baseline_config = 3;
| Parameter | |
|---|---|
| Name | Description |
value |
BlurBaselineConfig |
| Returns | |
|---|---|
| Type | Description |
IntegratedGradientsAttribution.Builder |
|
mergeFrom(IntegratedGradientsAttribution other)
publicIntegratedGradientsAttribution.BuildermergeFrom(IntegratedGradientsAttributionother)| Parameter | |
|---|---|
| Name | Description |
other |
IntegratedGradientsAttribution |
| Returns | |
|---|---|
| Type | Description |
IntegratedGradientsAttribution.Builder |
|
mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
publicIntegratedGradientsAttribution.BuildermergeFrom(CodedInputStreaminput,ExtensionRegistryLiteextensionRegistry)| Parameters | |
|---|---|
| Name | Description |
input |
CodedInputStream |
extensionRegistry |
ExtensionRegistryLite |
| Returns | |
|---|---|
| Type | Description |
IntegratedGradientsAttribution.Builder |
|
| Exceptions | |
|---|---|
| Type | Description |
IOException |
|
mergeFrom(Message other)
publicIntegratedGradientsAttribution.BuildermergeFrom(Messageother)| Parameter | |
|---|---|
| Name | Description |
other |
Message |
| Returns | |
|---|---|
| Type | Description |
IntegratedGradientsAttribution.Builder |
|
mergeSmoothGradConfig(SmoothGradConfig value)
publicIntegratedGradientsAttribution.BuildermergeSmoothGradConfig(SmoothGradConfigvalue)Config for SmoothGrad approximation of gradients.
When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf
.google.cloud.vertexai.v1.SmoothGradConfig smooth_grad_config = 2;
| Parameter | |
|---|---|
| Name | Description |
value |
SmoothGradConfig |
| Returns | |
|---|---|
| Type | Description |
IntegratedGradientsAttribution.Builder |
|
mergeUnknownFields(UnknownFieldSet unknownFields)
publicfinalIntegratedGradientsAttribution.BuildermergeUnknownFields(UnknownFieldSetunknownFields)| Parameter | |
|---|---|
| Name | Description |
unknownFields |
UnknownFieldSet |
| Returns | |
|---|---|
| Type | Description |
IntegratedGradientsAttribution.Builder |
|
setBlurBaselineConfig(BlurBaselineConfig value)
publicIntegratedGradientsAttribution.BuildersetBlurBaselineConfig(BlurBaselineConfigvalue)Config for IG with blur baseline.
When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383
.google.cloud.vertexai.v1.BlurBaselineConfig blur_baseline_config = 3;
| Parameter | |
|---|---|
| Name | Description |
value |
BlurBaselineConfig |
| Returns | |
|---|---|
| Type | Description |
IntegratedGradientsAttribution.Builder |
|
setBlurBaselineConfig(BlurBaselineConfig.Builder builderForValue)
publicIntegratedGradientsAttribution.BuildersetBlurBaselineConfig(BlurBaselineConfig.BuilderbuilderForValue)Config for IG with blur baseline.
When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383
.google.cloud.vertexai.v1.BlurBaselineConfig blur_baseline_config = 3;
| Parameter | |
|---|---|
| Name | Description |
builderForValue |
BlurBaselineConfig.Builder |
| Returns | |
|---|---|
| Type | Description |
IntegratedGradientsAttribution.Builder |
|
setField(Descriptors.FieldDescriptor field, Object value)
publicIntegratedGradientsAttribution.BuildersetField(Descriptors.FieldDescriptorfield,Objectvalue)| Parameters | |
|---|---|
| Name | Description |
field |
FieldDescriptor |
value |
Object |
| Returns | |
|---|---|
| Type | Description |
IntegratedGradientsAttribution.Builder |
|
setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
publicIntegratedGradientsAttribution.BuildersetRepeatedField(Descriptors.FieldDescriptorfield,intindex,Objectvalue)| Parameters | |
|---|---|
| Name | Description |
field |
FieldDescriptor |
index |
int |
value |
Object |
| Returns | |
|---|---|
| Type | Description |
IntegratedGradientsAttribution.Builder |
|
setSmoothGradConfig(SmoothGradConfig value)
publicIntegratedGradientsAttribution.BuildersetSmoothGradConfig(SmoothGradConfigvalue)Config for SmoothGrad approximation of gradients.
When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf
.google.cloud.vertexai.v1.SmoothGradConfig smooth_grad_config = 2;
| Parameter | |
|---|---|
| Name | Description |
value |
SmoothGradConfig |
| Returns | |
|---|---|
| Type | Description |
IntegratedGradientsAttribution.Builder |
|
setSmoothGradConfig(SmoothGradConfig.Builder builderForValue)
publicIntegratedGradientsAttribution.BuildersetSmoothGradConfig(SmoothGradConfig.BuilderbuilderForValue)Config for SmoothGrad approximation of gradients.
When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf
.google.cloud.vertexai.v1.SmoothGradConfig smooth_grad_config = 2;
| Parameter | |
|---|---|
| Name | Description |
builderForValue |
SmoothGradConfig.Builder |
| Returns | |
|---|---|
| Type | Description |
IntegratedGradientsAttribution.Builder |
|
setStepCount(int value)
publicIntegratedGradientsAttribution.BuildersetStepCount(intvalue)Required. The number of steps for approximating the path integral. A good value to start is 50 and gradually increase until the sum to diff property is within the desired error range.
Valid range of its value is [1, 100], inclusively.
int32 step_count = 1 [(.google.api.field_behavior) = REQUIRED];
| Parameter | |
|---|---|
| Name | Description |
value |
int The stepCount to set. |
| Returns | |
|---|---|
| Type | Description |
IntegratedGradientsAttribution.Builder |
This builder for chaining. |
setUnknownFields(UnknownFieldSet unknownFields)
publicfinalIntegratedGradientsAttribution.BuildersetUnknownFields(UnknownFieldSetunknownFields)| Parameter | |
|---|---|
| Name | Description |
unknownFields |
UnknownFieldSet |
| Returns | |
|---|---|
| Type | Description |
IntegratedGradientsAttribution.Builder |
|