[フレーム]
1 - 40 件 / 773件
こんにちは、ほけきよです。 pythonでデータを取り扱っているとき「あれ、これどうやるんだっけ??」 ってなること、ありませんか?僕は10分に1回程度なります。 いや、覚えろと自分でも思うんですが、覚えられないんですよね。100回くらい同じコマンドを調べてたりする。 物覚えが良くないので、ココを見れば絶対大丈夫なようにしておこうと思い、まとめてみました。 jupyterで最初に開くときに読み込むモジュールたち datetime 日付⇔文字列の変換 datetimeの足し算引き算 json dict型⇔json jsonファイルの入出力 datetimeをjsonにする時、エラーが出る pandas 〜以外を表すやつ andとor inf弾く リストをdfにサクッと変換 datetimeとして読み込み 読み込み時にcodecのエラーが出る DataFrameのfor文 numpy lins
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import json import glob import math from pathlib import Path from collections import Counter from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from sklearn.metrics import roc_auc_score from sklearn.model_selection imp
講義ノートの目次へ 微分方程式の基礎を学ぶための講義ノートPDF。 独学に使えるオンライン教科書を集めた。院試対策の演習問題と解答もある。 微分方程式は,大学1年で必ず押さえておこう。 そうしないとあちこちで(ほとんど全分野で!)つまづいてしまう。 物理や工学の他にも,化学反応,生き物の個体数,価格の変動...などなど, 「数式で動きをモデリング」する時に何にでも使う。早いうちにマスターしよう。 とくに解が厳密に求められるケースでは, 解き方のパターンを一通り押さえておく必要がある。 求積法 →解を積分で表現 級数解 →解を無限和で表現 演算子法やラプラス変換 →代数的・記号的な操作 こういった基礎ができれば,次はもっと実用的な段階にステップアップできる: 難しい微分方程式の場合,コンピュータで数値的に シミュレーションして解を求める。 ルンゲ・クッタ法などのアルゴリズムを使う。 現実世界では
数学速成コース 目次 コースガイダンス 第1回:集合と論理1 第2回:線形代数1 第3回:微分積分1 第4回:線形代数2 第5回:微分積分2 第6回:確率統計1 第7回:線形代数3 第8回:微分積分3 第9回:確率統計2 第10回:集合と論理2 第11回:線形代数4 第12回:微分積分4 第13回:確率統計3 付録 Copyright (C) 2008-2009 the CompView project of Tokyo Institute of Technology (Global COE program)
データ分析ガチ勉強アドベントカレンダー 14日目。 時系列データでまず思いつくのは、株価のチャートですよね。 また、最近はやっている仮想通貨。私も最近coincheckに入金しました。 ビットコイン取引所 "coincheck" やっぱ、実際にお金が絡むとちゃんと勉強しようって言う気になる!笑 せっかくチャートを見るわけだし、その見方について勉強しておこうと思いました。 そしてせっかくなので、自分で実装してどういう仕組みなのかまで知っておこうと思いました。 理系だからね、分からないものを使うのは嫌だからね。 というわけで、Python(主にPandasとMatplotlibを用いながら)でテクニカル指標についてやっていきます。扱うデータは三年分の日経平均株価。 指標について知りたい人も、自分で実装してみたいという人もどうぞ。 テクニカル分析とファンダメンタル分析 実装において ローソク足
機械学習Podcast「TWiML&AI」で先週取り上げられた可視化ライブラリ「Yellowbrick」が非常に便利だったので紹介します!ちなみにPodcastには作者の1人であるRebecca Bilbroさんが出演しているので興味持った方は是非聞いてみてください。 twimlai.com www.scikit-yb.org Yellowbrickとは 一言で言うと、機械学習に特化した可視化ライブラリです。実装的な面で言うと(こちらの方がわかりやすいかもしれません)、scikit-learnとmatplotlibをラップして、scikit-learnライクなAPIで使うことができるものです。 例えば相関行列のヒートマップをプロットしたい場合は次のように書くだけでグラフを作ることができます。 visualizer = Rank2D(features=features, algorithm=
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? はじめに この記事では、私がこれまでXで発信してきたデータサイエンスに関わるさまざまな分野のチートシートを一挙にまとめました。前処理、可視化、機械学習、深層学習、ベイズ・統計、さらにはその他の関連トピックまで、私が作成したものからネット上のものまで多岐にわたる内容を網羅しています。 それぞれのセクションでは、実践的かつ即戦力となる情報が詰まったチートシートを紹介しており、初心者から上級者まで幅広い層に役立つ内容を目指しました。 日頃からX(旧Twitter)を通じて、データサイエンスに関する知識や役立つリソースを共有していますが、今回の
ここでは、プログラムなどでよく使用されるアルゴリズムについて紹介したいと思います。 こんなことやって意味あるのかどうか正直言って迷いました。プログラマはたいてい知っているような内容だし見る人もいないんじゃないかと思いましたが、これからプログラミングを始めてみようという方にとっては参考になるかもしれないし、何よりも自分にとって頭の中を整理できたりするので、これから定期的にやっていこうかと考えてます。 ところで、紹介する内容はほとんど過去に出版された書物関係から抜粋しています。一応下の方に参考文献として挙げておきますので興味を持たれた方は書店などで探してみてはいかがでしょうか? ということで、まずはライン・ルーチン(画面に直線を描画する)についての紹介です。
2016年10月に未経験・新人データサイエンティストで雇ってもらいました。当時はまだ業界が牧歌的だったのと、比較的書類上のスペックが高い若者だったのもあり、運良く拾ってもらえたのでした。今だと100%受かってないです。 そんな私が今までで読んだ本の中で、役に立った本をつらつら書いていきます。 現代の若者がどんどん優秀になっているので、これくらいでいまんとこいっぱしのデータサイエンティスト(@ビジネスサイド)になれるんだなあという基準を述べようかと思いました。何年か後に振り返りたいですね。 もちろん、これが誰かの学習の役に立てばと思っています。 ちなみに、アフィリエイト入れてないので気にせず買っていってください。 数学無難に解析学と線形代数学を勉強しておくといいと思っています。
秋山です。 PythonはNumpyとかSympyとか、数値計算が得意なライブラリが充実しています。もちろん中学・高校の数学で習うレベルの計算もすぐにできちゃいます。 というわけで今回はPythonでプログラミングをして、中学・高校で習う数学の問題を解いてみました。 Pythonが使えるようになれば、中学・高校レベルの数学では困らずに済む。かもしれない。 ■しかく中学2年生レベル ◆だいやまーく連立方程式 ◇問題 x + y = 3 x + 3y = 13 のとき、xとyを求めよ。 Numpyを使って、連立方程式を行列計算で解いてみました。 ■しかく中学3年生レベル ◆だいやまーく2次方程式 ◇問題 x^2 - 10x + 24 = 0 のとき、xを求めよ。 昔の授業では (x - 4)(x - 6) = 0 x = 4 , 6 このような解法を習ったと思います。 この問題は、NumpyのPolynomialを使って式を作り
昨今の機械学習ブームの中、IT業界を中心とするエンジニアの方々から、「機械学習に必要な数学をもう一度しっかりと勉強したい」、そんな声を耳にすることが増えました。本書は、そのような読者を念頭におき、理工系の大学1、2年生が学ぶレベルの解析学(微積分)を基礎から解説した書籍です。大学生向けの教科書であれば、すでに多数の書籍がありますが、本書の特徴は、「定義と定理をもとに、厳密に展開される議論をとにかく丁寧に説明する」という点にあります。数式の変形についても、途中の計算をできるだけ省略せずに記載して、議論の展開を見失うことがないようにと配慮しました。大学生のころに勉強した、あの「厳密な数学」の世界をもう一度、がっつりと堪能していただけることでしょう。 「機械学習に必要な数学」というと、数学をただの道具と割り切って、公式の使い方、あるいは、数式が表わす意味だけを直感的に理解できれば十分と考える方も
削除提案中 現在、この項目の一部の版または全体について、削除の手続きに従って、削除が提案されています。 削除についての議論は削除依頼の該当のセクションで行われています(このページのノートも参照して下さい)。削除の議論中はこのお知らせを除去しないで下さい。 この項目の執筆者の方々へ: まだ削除は行われていません。削除に対する議論に参加し、削除の方針に該当するかをどうか検討して下さい。 著作権侵害のおそれこの項目は著作権侵害が指摘され、現在審議中です。 審議の結果、該当する投稿以降の版全てもしくはこの項目自体が履歴も含めて削除される可能性があります。編集は極力控えてください。著作権上問題のない自分の投稿内容が削除される可能性のある方は、早めに控えを取っておいてください。 該当する投稿をされた方へ: ウィキソースでは、著作権上問題のない投稿のみを受け付けることになっています。他人の著作物を使うと
はじめに ソフトウェア開発のチームの生産性や健全性というものは、内部の体感的として理解できるものの、外部の人間からは見えにくいものです。こういった情報の非対称性は開発チーム外の人々との関係の中での問題の原因になってきました。 また、複数の開発チームやプロダクトを束ねるEM、CTOや、管理職にとってそれぞれの状況を客観的な数字やグラフで可視化することは、全体的な戦略を考える上でも重要な参考情報になります。ですが、アンケートやプロジェクト管理を増やすほど、どんどんと開発メンバーに負担をかけてしまうことになり、計測のし過ぎによる疲れなども誘発してしまいます。 本稿では、gitリポジトリのログ情報から、いくつかのグラフを生成し、チームの状況を可視化するためのツールgilotを作成したので、その目的と意図、そして使い方、注意点を解説します。 アプローチ方法 gilotのアプローチは、git logの
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? English version available on dev.to はじめに matplotlibで作ったグラフの細かい調整は大変です。何をどういじったらいいのかを調べるのにアホみたいに時間がかかることもあります1。「何を」の部分の名前さえわからないこともあります。解決の糸口を掴んだ後も希望通りの見た目を実現するまでの最後のアレンジに苦労することが多いです2。これらの問題は matplotlibのグラフがどういう要素で構成されていて、それらに対してどういうことができるかを知る ことでいくらか改善されます。私はひたすらStack Ov
こんにちは、THE GUILDの @goando です。 私はTHE GUILDの中でもデータを扱う仕事を中心に活動しており、「UXの改善をデータでサポートする」をミッションに取り組んでいます。 ざっくり言うと、THE GUILDのクライアント企業が運営するサービスのログを分析してユーザーの行動傾向からUXの改善点を見つけ出したり、マーケットの市場リサーチを通じてサービスの戦略の策定を支援したり、と言った内容です。 こうした活動を通じて、データ分析の結果をグラフ等のレポートに落とし込むという事を数多く行ってきました。 試行錯誤を繰り返しつつ、データをどのようなデザインで視覚化するとメッセージが伝わりやすいのか、逆にどういう点に気をつけないと誤解を与えやすいのか、といったノウハウを少しずつ蓄積してきました。 データ分析を台無しにするダメグラフかく言う私もかつて、そのグラフから何が言いたいのか
今話題のDeep Learning(深層学習)フレームワーク、Chainerに手書き文字の判別を行うサンプルコードがあります。こちらを使って内容を少し解説する記事を書いてみたいと思います。 (本記事のコードの全文をGitHubにアップしました。[PC推奨]) とにかく、インストールがすごく簡単かつ、Pythonが書ければすぐに使うことができておすすめです! Pythonに閉じてコードが書けるのもすごくいいですよね。 こんな感じのニューラルネットワークモデルを試してみる、という記事です。 主要な情報はこちらにあります。 Chainerのメインサイト ChainerのGitHubリポジトリ Chainerのチュートリアルとリファレンス 1. インストール# まずは何はともあれインストールです。ChainerのGitHubに記載の"Requirements" ( https://github.c
%matplotlib inline import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np import seaborn as sns import numpy.random as rd m = 10 s = 3 min_x = m-4*s max_x = m+4*s x = np.linspace(min_x, max_x, 201) y = (1/np.sqrt(2*np.pi*s**2))*np.exp(-0.5*(x-m)**2/s**2) plt.figure(figsize=(8,5)) plt.xlim(min_x, max_x) plt.ylim(0,max(y)*1.1) plt.plot(x,y) plt.show() この図は、平均$\mu$、標準偏差$\sigma$
こんにちは、データ分析部でバイトをしている子田(id:woody_kawagoe)です。 ニュースパスのログを集計して分析するといった業務を行っています。Gunosyで分析に利用しているツールとしては主にJupyter, Pandas, matplotlibがあります。 この組み合わせは非常に相性が良く、研究でも役立つと思います。 そこで今回のブログではデータ分析に役立つtipsや学んだことをまとめます。 Jupyter Pandas matplotlab データ分析の基本的な流れ 参考資料 Jupyter jupyter.org ブラウザ上で利用できる開発環境です。 対話型で、作成したスクリプトと出力結果の対応関係が非常に見やすいです。 スクリプトでprint文をかかなくても最終行に変数おけば表示してくれます。 またgithub上にJupyterで作成できるipynbファイルを置くと他の
データ分析における関数の使い方については様々な記事が上がっています。関数を知らなかったり使い方が分からないときは調べればだいたい答えが見つかります。 一方で、実際に分析を始めようとすると、たとえ関数の使い方がわかっていても、データをどのような切り口から何を分析・可視化していけば良いのか困ってしまうことがよくあります。 この記事では、あんちべさんが書いたデータ解析の実務プロセス入門という本をベースに、どのようなデータから何を見たいときにどのような可視化手法を使えばよいのかを、具体例を交えながら整理していきます。 探索的データ解析とは データ解析のアプローチは、大きく分けて仮説をデータで検証する「仮説検証型」とデータから仮説を生み出す「探索型」に分けられます。 実際にデータ解析を行うときは、仮説検証型と探索型を行き来しつつ知見を見出していきます。 データ解析には検証すべき仮説を設定することが必
Pythonの可視化ライブラリ「Bokeh」ではじめるデータビジュアライゼーション Bokehではじめるデータビジュアライゼーション 2019年1月22日、freee株式会社にて、Data Driven Developer Meetupが主催するイベント「Data Driven Developer Meetup #4」が開催されました。サービスをより良いものにするために日々データと向き合っているデータサイエンティストやエンジニアなど、様々な職種で活躍する人々が集い、知見を共有する本イベント。今回は日本経済新聞社とエムスリー株式会社の2社がメインセッションに登壇し、自社の取り組みについて語りました。プレゼンテーション「Bokehではじめるデータビジュアライゼーション」に登場したのは、YukiyoshiSato氏。デモを交えながら、Pythonのインタラクティブビジュアライゼーションライブラリ
概要 pysocviz が提供する機能 ggplot2 と同じようにできないところとその対策 aes() にクオートされてない変数を指定できない R のように改行できない ggplot2 で使えた色名が使えない ggplot2 で使えた linetype が使えない 文字化けの回避 ggrepel パッケージの利用 scales::percent などの単位・スケール指定 テーマや色パレットのプリセットを変更したい場合 subtitle/caption が表示されない 複数のグラフを連結できない hjust/vjust が使えない グラフ内の図形やテキストの大きさのバランスがおかしい geom_smooth/stat_smooth で一般化加法モデル (GAM) による平滑化ができない geom_quantile の method 指定ができない geom_smooth/stat_smoo
Pandasのグラフ描画機能 この記事ではPandasのPlot機能について扱います。 Pandasはデータの加工・集計のためのツールとしてその有用性が広く知られていますが、同時に優れた可視化機能を備えているということは、意外にあまり知られていません。 この機能は Pandas.DataFrame.plot() もしくは Pandas Plot と呼ばれるものです。 Pandas Plotを使いこなすことが出来るようになれば、 データの読み込み、保持 データの加工 データの集計 データの可視化 というデータ分析の一連のプロセスを全てPandasで完結させることが出来る、つまり分析の「揺りかごから墓場まで」を実現することが出来ます。 Pandasのプロット以外の機能について この記事ではPandasのデータハンドリングなどに関わる機能は説明しません。 そちらにも興味がある方は下記の記事などを
世の中のことをもっと知るにはどうしたら良いだろうと思うときがある。世の中の多くの事柄はログやデータに落とされる。Googleなどの検索サイトは良い例だろう。さて、そのログやデータをどうすれば良いのか? 多くの場合、視覚化が有効な手段となる。 まずは身の回りの日常的なデータやログを何とかしたい。ただ、日常のデータを視覚化するのに数十行以上のコードは書きたくない。まるで息をするかのごとく自然に視覚化を行いたいのだ。そのためには1〜2行、長くて数行で済ませることが必要だ。そこでPythonとmatplotlibを使う。加えて、IPythonがあればなお良い。IPythonの導入については以前のブログ記事であるIPythonの埋め込みプロットが素晴らしいを参考にして欲しい。 まずは事前にnumpyとmatplotlibをインポートしておく。できればscipyも。 >>> from numpy im
Pythonでのグラフ描画 Pythonチャートを描く場合の定番は「matplotlib」ですが、その見た目のやや野暮ったい感じと、表記法のややこしさが指摘されています。 そこで、この記事ではMatplotlibの機能をより美しく、またより簡単に実現するためのラッパー的存在である、「Seaborn」の使い方を取り上げます。 ◆だいやまーく Overview of Python Visualization Tools http://pbpython.com/visualization-tools-1.html 上記の記事ではMatplotlibとSeabornについて下記のように書かれています。 matplotlibについて Matplotlib is the grandfather of python visualization packages. It is extremely powerful b
「技術者のための」と冠した数学書の第2弾――線形代数学 「機械学習を支える『数学』をもう一度しっかりと勉強したい」方々に向け、理工系の大学生が学ぶ『線形代数学』を基礎から解説した書籍です。 ■しかく本書の特徴 ・機械学習を支える大学数学の3分野のうち、線形代数学を順序立てて学習できる(既刊『技術者のための基礎解析学』、続刊予定『技術者のための確率統計学』との姉妹編。これら3冊で大学数学の3分野を学ぶことができる) ・定義と定理をもとに、厳密に展開される議論を丁寧に説明している(再入門者に理解しやすい) ・各章の最後に理解を深めるための演習問題を用意 ■しかく対象読者 ・大学1、2年のころに学んだ数学をもう一度、基礎から勉強したいエンジニア ※(注記)理系の高校数学の知識が前提となります。理工系の大学1、2年生が新規に学ぶ教科書としても利用いただけます。 線形代数学がテーマの本書では、実数ベクトルに限定して、「
Simple and efficient tools for predictive data analysis Accessible to everybody, and reusable in various contexts Built on NumPy, SciPy, and matplotlib Open source, commercially usable - BSD license
ExcelのPythonJupyter Notebook JupyterをMicrosoftExcelに埋め込み、VBAの代わりにPythonを記述します 以前は、ExcelとPython JupyterNotebooksの間の「どちらか/または」の選択でした。PyXLL-Jupyterパッケージの導入により、両方を並べて使用できるようになりました。 この記事では、Excel内で実行されるJupyterNotebookをセットアップする方法を紹介します。2つの間でデータを共有し、ExcelワークブックからJupyterノートブックに記述されたPython関数を呼び出すこともできます。 入門 まず、ExcelでPythonコードを実行するには、PyXLLアドインが必要です。PyXLLアドインを使用すると、PythonをExcelに統合し、VBAの代わりにPythonを使用できます。PyXLL
matplotlibはPythonでグラフを描画するときなどに使われる標準的なライブラリです。 画像ファイルを作るばかりでなく、簡単なアニメーションやインタラクティブなグラフを作ることも可能です。 実際の例はmatplotlibサイトのギャラリーで見ることができます。 matplotlib/gallery matplotlibは本家のサイトやどこかのブログにあるチュートリアルや例を描画してみるぶんには簡単なのですが、 実際に自分でプロットするとなると基礎的な概念を理解していないと使いにくいライブラリでもあります。 また、基礎的な概念を理解していないとドキュメントを参照する際にもどこを見て、どう実用すればいいのかわかりません。 そこで、この記事ではそのあたりのmatplotlibの基礎を解説していきます。 なお、Python自体の知識はある程度仮定していますが、matplotlib自体の実装
講義ノートの目次へ 大学の初年度で学ぶ,微分・積分(=解析学)の講義ノートPDF。 良質な講義資料を集めた。演習問題と解答もある。おかげで,高い参考書を買わなくて済む。 夏学期には「一変数の微積分」を扱い, 冬学期に「多変数の偏微分・重積分」を扱うケースが多い。 微分には極限やε-δ論法,級数展開,収束などが含まれ, 積分には線・面・体積の積分や広義積分を含む。 これらの範囲が,1冊の教科書の中に収められている。 ※(注記)並列学習として,線形代数の講義ノートはこちら。 ※(注記)解析学の続きとして,複素解析,微分方程式,ベクトル解析がある。 解析学の講義ノート まず,大学1年生で学ぶ解析学の要点は,下記の記事で要約してある。 先に目を通しておこう。 大学1年生で学ぶ数学「解析学・微積分」の要点まとめ,勉強法の解説。 入門用に全体像・概要をわかりやすく紹介 http://language-and-engi
この記事はなんなの 「センター試験程度であれば、数式と文章を愚直にプログラムに落としこむことさえできれば、昨今のツールを用いて、何も閃かずとも機械的に問題を解くことが出来る」ということの主張 科学計算ライブラリ(特にSympy)の布教 将来、働き先がなくなったとき、「私、私こういうことができるんです!!」って言えばどこかが拾ってくれないかなあ、という夢 使用するもの Python (3系) Scipy.org に載っている科学計算ライブラリ全て(タグが足りない!!) 共に、2015年6月現時点での最新版を使用します(特に、Scipyは今年1月に実装された最新版の機能を使用するので注意してください)。 数々のライブラリを一つ一つインストールするのはすごく面倒です。面倒なので、有名どころを固めたパッケージのようなものが複数存在します。 個人的にはいつもAnacondaを使ってまとめてインストー
Mathematicaクックブックposted with カエレバSal Mangano オライリージャパン 2011年04月25日 Amazonで探す楽天市場で探すYahooショッピングで探す 目次 目次 Wolfram Alphaの問題点 Sympyとは? ブラウザでSympyを使う JupyterでSymPyを使う インストール Sympyの数式処理の例題 多項式展開 方程式をある変数で解く 連立方程式を解く 数値を代入する 微分 積分 テイラー展開 極限 その他 Sympyを使ったエンジニアリング例題 三次元の回転行列を計算する SymPyによるCコードの出力 SymPyはJupyterと一緒に使うとかなり便利 参考資料 MyEnigma Supporters Wolfram Alphaの問題点 以前、Wolfram Alphaがすごいという記事を書きましたが、 myenigma.h
pandas は可視化のための API を提供しており、折れ線グラフ、棒グラフといった基本的なプロットを簡易な API で利用することができる。一般的な使い方は公式ドキュメントに記載がある。 Visualization — pandas 0.17.1 documentation これらの機能は matplotlib に対する 薄い wrapper によって提供されている。ここでは pandas 側で一処理を加えることによって、ドキュメントに記載されているプロットより少し凝った出力を得る方法を書きたい。 補足 サンプルデータに対する見せ方として不適切なものがあるが、プロットの例ということでご容赦ください。 パッケージのインポート import matplotlib.pyplot as plt plt.style.use('ggplot') import matplotlib as mpl m
秋山です。 サービスを運営していると、いろいろなデータから必要な情報だけを取得して分析するような機会もたくさんあるかと思います。 分析に使えるツールは世の中にたくさんあるので、どれが使いやすいかは人それぞれですが、今回は「分析を始めたばかりで何をどうすればいいのかわからない...!」という方のために、Pythonを使って初心者向けのデータ分析のやり方を紹介します。 ■しかく使用する環境 paizaでは、Pythonを使ってスキルチェック問題の回答データや、ユーザーの情報等の分析をしています。(R言語を使っていたときもありましたが、私がPythonのライブラリにある便利機能を使いたかったのと、R言語があまり得意ではなかったので移行しました) 今回は、Python3がインストール済みの環境を想定しています。これから出てくるコードもPython3を推奨しています。 下記のライブラリを使用します。 Jupy
import numpy as np import scipy from scipy.stats import binom %matplotlib inline %config InlineBackend.figure_format = 'svg' import matplotlib import matplotlib.pyplot as plt import seaborn as sns print("numpy version :", np.__version__) print("matplotlib version :", matplotlib.__version__) print("sns version :",sns.__version__) numpy version : 1.18.1 matplotlib version : 2.2.2 sns version : 0.8.1
久しぶりの投稿になってしまいましたが、ニュースパス(現在CM放映中!!)開発部の大曽根です。 作業中はGrover Washington Jr のWinelightを聴くと元気が出ます。参加ミュージシャンが素晴らしいですね。 なぜ時系列分析をするのか 季節調整 実演 おまけ: 時間別に見てみる まとめ 今後 なぜ時系列分析をするのか 数値を非常に重視している弊社では、数値を知るためのツールとしてRedashやChartioおよびSlackへの通知を活用しています。現在の数値を理解する上では、長期のトレンド(指標が下がっているのか、上がっているのか)を知ることが重要です。しかし、日々変化するデータ(特に売上やKPIと言われる指標)は、ばらつきも大きく、変化を適切に捉えることが難しいこともあります。 特にSlackなどへの通知を行っていると、日々の変化に囚われがちです。例えば、弊社ではニュース
何の話かというと RStudioではじめるRプログラミング入門 作者: Garrett Grolemund,大橋真也,長尾高弘出版社/メーカー: オライリージャパン発売日: 2015年03月25日メディア: 大型本この商品を含むブログを見る 某編集長から上記の書籍が送られてきて、「これは、次はRの本を書けという指示か????」と勘ぐってみたものの、筆者はPython派なので、「これと同じことは全部Pythonでもできるんだよー」と言いたくなって、このエントリーを書き始めた次第です。ちなみに、この本、Rの入門書としてはよくできているので、これのPython版ができたら、それはそれで役に立つ気もします。 なお、このエントリーでは、あくまでコードの部分だけを書き直して、RとPythonの差異についての説明だけを行ないます。コードそのものの説明については、上記の書籍をご購入ください。 環境準備 IP
1. はじめに 週刊少年ジャンプ(以下,ジャンプ)は,日本で最も売れている漫画雑誌1です.言うまでもなく,私は大ファンです. ジャンプ編集部の連載会議は非常にシビアです.ジャンプ作家の奮闘を描いたフィクション漫画「バクマン。」では,編集部が毎号の読者アンケートをもとに各漫画の人気を評価し,掲載順や打ち切り作品を決定する様子が描かれています2.連載開始から10週以内(単行本約1冊分)で連載が打ち切られてしまうことも珍しくありません.とても厳しい世界です. 本記事では,機械学習を使って,短命作品(10週以内に終了する作品)の予測を行います.究極の目標は,ジャンプ編集部より先に打ち切り作品を予測し,好みの作品が危ない場合はアンケートを出して打ち切りを回避することです3.我々は読者アンケートの結果を知ることができないので,掲載順の履歴を入力とし,短命作品か否かを出力する多層パーセプトロン4をTen
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く