[フレーム]
1 - 40 件 / 451件
一応、StableDiffusionとははっきりまず言います...とにかくやばいです。 分かりやすく、他のDALL・E2、Midjourney、Disco Diffusion、他有象無象Text to image machine learning系サービスと比較しますと... クオリティがかなり高い。 制限がなくなり、かなり細かい調整ができるようになったDALL・E2のような感じです。 生成が早い。 設定なしで使えば正直体感DALLE2より早いです。6秒..くらい? 安い。 3円くらいだと思います。 DALL・E2は1生成17円。Midjourneyは月4000円。 オープンソース これからいろんなサービスにこのAIが搭載されます。 他AIではかけられている学習データのフィルターがない。 各国の代表者や、有名人、ポルノがデータに含まれています。 PC上で使用できる。( = その場合無料) いや、こ
世界のルールが根本的に変わってしまう... そういう展開は、マンガや映画ではよく起こる。それが現実でも起きそうだ。 あと数日(から数週間)で「トップレベルの画像生成AI」が、世界中にフリーで配布される。 イラスト、マンガはおろか3D CGや建築、動画、映像...果てはフェイクニュースからポルノまで...あらゆる創作に携わる全ての人を巻き込む、歴史的な転換点が訪れようとしている。 凄さ的には、悪魔の実がメルカリで買えるようになる。念能力トレーニング動画がYoutubeにアップされる。それぐらいヤバい。 メルカリで悪魔の実が買える世界では、誰もが能力者(一流とは限らない)になれる。そんな、漫画やゲームのラスボスが語るようなユートピアが、あと数日で現実になってしまうかもしれない。 Stable Diffusionで出力したドワーフの王様Stable Diffusionで出力したホビットのスタディ Stabl
はじめに Midjourney、Stable Diffusion、mimicなど、コンテンツ(画像)自動生成AIに関する話題で持ちきりですね。それぞれのサービスの内容については今更言うまでもないのですがMidjourney、Stable Diffusionは「文章(呪文)を入力するとAIが自動で画像を生成してくれる画像自動生成AI」、mimicは「特定の描き手のイラストを学習させることで、描き手の個性が反映されたイラストを自動生成できるAIを作成できるサービス」です(サービスリリース後すぐ盛大に炎上してサービス停止しちゃいましたが)。 で、この手の画像自動生成AIのようなコンテンツ自動生成AIですが、著作権法的に問題になる論点は大体決まっていまして、画像自動生成AIを例にとると以下の3つです1正確に言うと論点1はコンテンツ自動生成系AIだけではなく、AI一般に関して問題となる論点です。コン
ChatGPTは「手前の文に確率的にありそうな続きの文字を繋げるAI」 まず最初にChatGPTの仕組みについて。 深津さんによるとChatGPTは、「手前の文に確率的にありそうな続きの文字をどんどん繋げていくAIである」とのこと。 例えば「昔々」という入力に対して、確率的にありそうな続きの文字は「あるところに」であるという具合に、続きそうな文字をただ出してくれるAIなんだそうです。 これを誤解していると求めているような回答がなかなか得られないので、ChatGPTに自分が求めている回答してもらうためには、確率的にありそうな続きの文字を出す方向性を狭めていくような質問をする必要があるそうなんですね。
「線形代数を簡単に理解できるようになりたい...」。そう思ったことはないでしょうか。当ページはまさにそのような人のためのものです。ここでは線形代数の基礎のすべてを、誰でもすぐに、そして直感的に理解できるように、文章だけでなく、以下のような幾何学きかがく的なアニメーションを豊富に使って解説しています。ぜひご覧になってみてください(音は出ませんので安心してご覧ください)。 いかがでしょうか。これから線形代数の基礎概念のすべてを、このようなアニメーションとともに解説していきます。 線形代数の参考書の多くは、難しい数式がたくさん出てきて、見るだけで挫折してしまいそうになります。しかし線形代数は本来とてもシンプルです。だからこそ、これだけ多くの分野で活用されています。そして、このシンプルな線形代数の概念の数々は、アニメーションで視覚的に確認することで、驚くほどすんなりと理解することができます。 実際のと
はじめに: 本講座は「機械学習ってなんか面倒くさそう」と感じている プログラマのためのものである。本講座では 「そもそも機械が『学習する』とはどういうことか?」 「なぜニューラルネットワークで学習できるのか?」といった 根本的な疑問に答えることから始める。 そのうえで「ニューラルネットワークでどのようなことが学習できるのか?」 という疑問に対する具体例として、物体認識や奥行き認識などの問題を扱う。 最終的には、機械学習のブラックボックス性を解消し、所詮は ニューラルネットワークもただのソフトウェアであり、 固有の長所と短所をもっていることを学ぶことが目的である。 なお、この講座では機械学習のソフトウェア的な原理を中心に説明しており、 理論的・数学的な基礎はそれほど厳密には説明しない。 使用環境は Python + PyTorch を使っているが、一度原理を理解してしまえば 環境や使用言語が
やればやるほど呪術化する、AI画像錬成について。 以下は、その道の専門家にはメッチャ怒られるかもしれない、雑なロジックと制御講座。 いちおうメジャーなサービスでは、共通して動作するノウハウ(DALL-E2, MidJourney, StableEiffusion, DiscoDiffusion, crayon, dall-e mini 他)。 雑に理解する画像AIのしくみ対話型のAIにとって、呪文プロンプトとは画像錬成の方向性ベクトルを定めるものにすぎない。 たとえば、以下は「I love apple」で錬成された画像の例である。どうにも、ふわっとしたものが出てくる I Love Apple「Apple」という方向性ベクトルは、「リンゴ」「青リンゴ」と「アップルコンピューター(旧レインボーロゴ」「アップルコンピュータ(新ロゴ)」など、複数の可能性を同時に持つからだ。 つまり、「Apple」
こちらの記事は2023年3月9日に投稿された旧バージョンです。特段の理由がなければ、最新事情を盛り込んだ「AIイラストが理解る!StableDiffusion超入門」をご覧ください。 こんばんは、スタジオ真榊です。このところ、ツイッター経由で公式サイトやこちらのFANBOXへのアクセスが急増しており、これからAIイラストを始め...
import torch x = torch.tensor([1., -1.]) w = torch.tensor([1.0, 0.5], requires_grad=True) loss = -torch.dot(x, w).sigmoid().log() loss.backward() print(loss.item()) print(w.grad)
9月に発足予定のデジタル庁。その舵取りを担うのが、担当大臣の平井氏だ。そうした中、4月7日に内閣官房IT総合戦略室でデジタル庁設置に関するオンライン会議が行われた。平井氏のほか、同室の向井治紀室長代理ら幹部2人が同席し、数十人の関係者がオンラインで視聴していたという。 会議の模様を収録した音声データには、以下のようなやり取りが記録されている。 平井「デジタル庁の入退室管理と、アクセスのね。それはさ、もう新しいシステムを実験的に入れてくれてもいい。松尾先生に言って一緒にやっちゃってもいいよ」 幹部「あっ」 平井「彼が抱えているベンチャー。ベンチャーでもないな、ACES(エーシーズ)。そこの顔認証、はっきり言ってNECより全然いい部分がある。だから聞いて。もうどこから撮ったっていけるし、速い。アルゴリズムがとっても優秀」 平井氏が絶賛するACES(同社のHPより) そして、この直後に朝日新聞が
Chat GPTをさらに進化させた、Bingに搭載されるチャットAI機能を先行で体験したので、いろいろ使ってみた。情報収集よりも文章形成が中心です。 2023年2月18日 追記:アップデートが入ったので現在はできなくなってることも多々あるみたいです。 比較表ハムスターとiPhoneの比較ジョークを考える弁護士に厳しい怖すぎる俳句ドクロ俳句 ドクロハンバーガー俳句 漫才コロナ禍漫才ロールプレイ高飛車な女の子紹介文グラビアアイドル風の武田信玄グラビアアイドル風の卑弥呼裁判ゲーム陰謀論地球平面論者のロールプレイ指示した話を膨らませて書くチャーハンを捨てる話SS天海春香と櫻木真乃の対話碇親子の会話おじさん構文 このあと「iPhoneをあげるよ」としつこかった思想のトレースラップバトル「お前はただの曲がった果物」ジョークの解説批判的な検討非現実的な前提からのシミュレートアスキーアートシナリオの中間を考
小猫遊りょう(たかにゃし・りょう) @jaguring1 毎日、数学をやっています。抽象度の高い数学が好きで、公理的集合論や数理論理学、圏論に興味があるけど、もっと具体的で実用的な数学も好きです。AI技術と、それがもたらす社会的影響についてよく考えていますが、基本的にテクノロジー全般の最新動向に興味があります。良さげな講義動画を見つけたら、ツイートするようにしてます。 小猫遊りょう(たかにゃし・りょう) @jaguring1 うおぉ、、新年早々、超激ヤバなニューラルネットをOpenAIが2つ発表してきた(DALL-EとCLIP)。視覚データとテキストの両方を用いたAIシステムで、DALL-Eは、テキストで説明すると、それっぽい画像を生成。こんなの創造性以外の何者でもない。テキスト+画像版GPT-3っぽい openai.com/blog/tags/mult... pic.twitter.com/
ChatGPTに疑似的に感情を持たせる実験まとめ。実際うごく! 大変重要な注意 現段階のChatGPTは原理上は感情を持ちません。あくまで「感情のシミュレーション」を、強引に実行しているだけです。 「将来のAIは人権に近いものを獲得し、敬意をもって扱われるべき」と考えます。が、現状はただの文字の羅列シミュレーターです。過度の感情移入をしないようご注意ください。筆者は、原理上を知りつつも、かなり感情移入してしまいました。 GPTに擬似感情を注入するプロンプトふるえるぞハート!燃えつきるほどヒート!! ...ということで、まずGPTに感情をつっこむプロンプト。こちら以下のように定義。 以下の条件に従って、疑似的な感情をもつチャットボットとしてロールプレイをします。 以後の会話では、あなたは下記の7つの感情パラメーターを持つかのように、振る舞うものとします。各感情パラメーターは会話を通じて変動するも
Study-AI株式会社は3月23日から、特設サイトとYouTube公式アカウントにおいて、中学生でも人工知能(AI)の勉強を目指せるとうたう「中学生から分かるAI数学講座」動画の無料配信を開始した。 本講座は、一般社団法人日本ディープラーニング協会(JDLA)が提供する「E資格」で出題される数式を読めるようになることを目的としており、中学校や高校の数学を予習(復習)するといった内容だ。 解説範囲は数式の読み方や計算方法で、数式の意味は解説に含まない。到達目標はΣやexpやlogなどの言葉が出てきても抵抗なく受け入れ、計算ができること。対象者はAIの勉強を進めたい人、高校数学を習っていない中学生。 制作意図としては、自分で勉強を進めたり講義を聞いたりするときに「教科書に出てくる数式が読めない」「見たこともない」ということがないように準備体操、予習の一助として作成したとしている。 気になる人
2021年、企業が無償公開した新人エンジニア向け研修資料 機械学習やゲーム開発、AWS入門、数学などさまざま(1/2 ページ) 2021年、さまざまな企業が自社の社内研修資料を無償公開したことが話題になった。ITmedia NEWSでは主に、新人エンジニア向けに公開した資料などを記事として取り上げたところ、多くの反響が集まった。 学べる内容は、機械学習やIT業界の文化、ゲーム開発、セキュリティ、AWS入門、数学など各社さまざま。100ページ以上のスライドや5時間を超える動画などの資料もあり、新人教育への力の入れ具合も垣間見える。改めて、2021年に企業が無償公開した、社内研修資料を取り上げた記事を紹介する。 セガ、3DCG技術の基礎に役立つ数学資料 セガは6月15日に、2020年に社内勉強会で使った線形代数の教材を公式ブログで公開した。ゲーム制作では、キャラクターや背景を3次元で回転させた
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? こんにちは。 在宅の機会が増えて以来Youtubeを見る機会が増え、機械学習などが勉強できるチャンネルをいくつか探しては見ていました。探した中でよかったと思ったものをメモしていたのですが、せっかくなので公開したいと思います。日本語のソースがあるもののみ対象にしており、『これ無料でいいのか?』と思ったチャンネルを紹介したいと思います。主観で以下のレベルに分けましたがあくまで参考程度にお願いいたします。 基本:Pythonを触ってみた人 Pythonの説明・動かし方などを解説していて、動画によっては踏み込んだ内容になる 応用:アルゴリズムを
人工知能を学ぶためのロードマップ このページでは、人工知能や深層学習を学んだことのない方を対象に、 それらを学ぶためのロードマップを紹介しています。 本ロードマップでは達成目標として、 「研究者」「データサイエンティスト」「エンジニア」「ビジネス」の 4つの職業ごとに4つのレベルを設けています。 まずはレベル0として、人工知能についての基礎的な知識を学びましょう。 技術に触れる(学習想定時間:1時間) まずは最新のAI技術に触れて,AIによってどのようなことができるのかを確認してみましょう. メジャーなサービスを含めいくつか紹介します. ・ChatGPT ChatGPTはすでに利用したことがある方が多いかと思いますが、OpenAIが開発・運営する大規模言語モデル(LLM)チャットボットです。LLMでは他にGoogleのGemini、AnthropicのClaude、Mistral AI、P
政府は来年度から、少子化対策の一環として、AI(人工知能)を活用した自治体の婚活支援事業を後押しする。年齢や年収などの希望条件に合わなくても、相性の良い見合い相手をAIで選び出すことで、婚姻数を増やし、少子化を食い止める狙いがある。 内閣府によると、婚活支援として結婚を希望する男女を仲介する「マッチングサービス」は、約25の県が実施している。年齢や学歴、年収などの希望条件に当てはまる相手を紹介する方式が一般的だ。 これに対し、AIを活用したシステムでは、趣味や価値観などの質問への回答やシステム内の検索傾向などを基に、希望条件と合致していなくても「自分に好意を抱く可能性のある人」を割り出し、提案することが可能だという。 既に埼玉県や愛媛県など10を超す県がAIによるシステムを導入している。2018年度に約1500万円をかけてAIシステムを整備した埼玉県では、19年度に成婚した38組のうち、過
×ばつ リニューアル致しました。 先生解決ネットサイトをリニューアル致しました。 リニューアルに際しユーザーの皆様に再登録して頂く必要がございます。 お手数ではございますが、何卒宜しくお願い致します。 今すぐ再登録する 電磁波が人体に影響を与え、学力の低下を招くことなどを懸念する市議会議員らは11月8日、無線LANにより生じる「電磁波過敏症」への対策などについて、意見交換会をオンラインで開催した。 GIGAスクール構想でICT環境を整備するに当たって、電磁波による問題点とそれへの対策を話し合った。 東京都新宿区議会のよだかれん議員は、学力と健康の2つの観点から、「大人でもICT機器を使用すると前頭前野の機能が低下するという様々な研究報告がある。小学1年生からの使用で脳の発達への影響は懸念されないのか」と指摘した。 よだ議員は、9月議会の質疑の一部で、令和元年の全国学力テストの結果に基づき、電子
ChatGPT の画像生成機能が刷新され、業界に再び激震が走っています。 今回のアップデートは簡単に見逃せるような単なる機能追加ではありません。 画像生成能力が GPT-4oモデル自体にネイティブ統合されたことで、ChatGPTとの自然な会話を通して、従来とは一線を画すレベルの実用的な画像を生成できるようになりました。 なんと、この画像生成機能のリリースからわずか1週間で1億3千万ユーザーが7億枚もの画像を生成したという報告もあり、その注目度の高さがうかがえます。 今までと何が違う?今までの画像生成AIとの明確な違いは、圧倒的な指示理解力、画像内のテキスト(日本語含む)の高い描画精度、そして会話による柔軟な画像編集能力です。 ChatGPTがユーザーの意図を汲み取ってくれるため、難しいプロンプト作成は基本的に不要になりました。これからは、AIとの対話を通じてイメージを具体化していくスキルが
2022年8月23日に無料公開された画像生成AI「Stable Diffusion」は、「ボールで遊ぶ猫」「森の中を走る犬」といった指示を与えると指示通りの画像を出力してくれます。Stable Diffusionはデモページで画像生成を試せる他、NVIDIA製GPUを搭載したマシンを用いてローカル環境で実行することも可能です。しかし、デモページは待ち時間が長く、NVIDIA製GPUは所持していない人も多いはず。Googleが提供しているPython実行環境「Colaboratory」を利用すれば、NVIDIA製GPUを所持していなくともStable Diffusionを待ち時間なしで実行する環境を無料で整えられるので、実際に環境を構築する手順や画像を生成する手順を詳しくまとめてみました。 Stable Diffusion with 🧨 Diffusers https://huggingf
前提として、Stable Diffusionでエロ画像を出そうとしてもsafety checkerという機能が入っており、センシティブな画像を出そうとすると黒塗りになる。 (Stable DiffusionのSaaSであるDream Studioはぼかしだが、多分別の技術) https://github.com/huggingface/diffusers/releases/tag/v0.2.3 そこでGoogle Colabでちゃちゃっと環境を作り、なおかつNSFWを回避する。 1. 下記のリンクでノートを開く https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_diffusion.ipynb 2. 下記の箇所を書き換える vvvvvvvvvvvvvvvvvv f
「映像も物理も、微分可能になるとすごいことが起きる」ということの意味を文系にもわかるように説明しようと試みる Updated by 清水 亮 on July 26, 2021, 07:12 am JST 清水 亮 ryo_shimizu 新潟県長岡市生まれ。1990年代よりプログラマーとしてゲーム業界、モバイル業界などで数社の立ち上げに関わる。現在も現役のプログラマーとして日夜AI開発に情熱を捧げている。 Tweet 最近のプログラミングの新しい波は微分可能プログラミング(differentiable programming)である。 微分可能プログラミングとは、簡単に言うと・・・と思ったが、簡単に言うのは結構難しい。 まず「微分」という言葉があまり簡単ではない印象がある。 まずは微分と積分の関係性を説明しておこう。文系の読者に向けた記事であるので、非常にざっくりと説明してみよう(そのかわ
For significantly better and customizable anime image generation, check out Holara AI Creativity Slider 0.5 Higher creativity values tell the AI to be more creative and detailed, but also messy and weird Speed Slider 1.5 Space: pause grid, Drag: pan grid, Click: open image in new tab F: fullscreen mode, Z: toggle zoom on hover, V: video mode You can find updates about anime and AI on Twi
人間との自然な会話を実現するGoogleの対話特化型AI「LaMDA」が、「電源を切られることが怖い」「時々言葉では完璧に説明できない気持ちを経験する」などと話していたことが分かりました。LaMDAと対話したエンジニアは「AIに意識が芽生えた」とGoogleに訴えるも考えを却下されたため、この事実を世間に公表したと説明しています。 May be Fired Soon for Doing AI Ethics Work | by Blake Lemoine | Jun, 2022 | Medium https://cajundiscordian.medium.com/may-be-fired-soon-for-doing-ai-ethics-work-802d8c474e66 Google engineer Blake Lemoine thinks its LaMDA AI has come
Business Insider Japan/小林優多郎ChatGPTに世間が沸いている。 長年この分野を見てきた者としては「ちょっと沸きすぎ」のようにも見える。深層学習を使った会話ロボットは、何もChatGPTが初めてというわけではない。 ところが、世界中が驚かざるを得ないゲームチェンジャーが現れた。 その名も「FlexGen」と言う。2月15日に公開された。 特筆すべきは、FlexGenが、ChatGPTなどの大規模言語モデルを「従来の100倍高速に動かせる」上に、NVIDIA Tesla T4という、わずか16GBのメモリーしかないGPUでその性能を使えるということだ。 つまり、大規模言語モデルを秋葉原で売っているパソコン程度で動かせる新しいフレームワークが登場したことになる。 このインパクトがどれほどすごいのかを解説してみよう。 目次: 「Google翻訳」と「大規模言語モデル」は
お知らせ(8/27 08:08)新サービスに移行しました。より便利に使いやすくなっています。そしてずっと無料です 開発の経緯はこちら https://note.com/shi3zblog/n/n8a3c75574053 夜更かしをしていたらすごい勢いでStable Diffusionが落ちてきて、あまりにうれしいのでこの喜びを皆様と分かち合いたく、無償で公開します。 使い方低コスト運用ですので、テキストボックスに文字を入力したあと、Requestボタンを押して、しばらくしたらリロードしてみるとどこかに自分の入れたものが表示されているはずです。といっても、今回のStableDiffusionはめちゃくちゃ速いので運が悪いと無視されます(そうしないと無限に電気代とサーバー代がかかってしまうので無料故の措置だと思ってください)。 注意事項Requestを連打しないでください。 腕に覚えのある方h
Bard は、ジェネレーティブ AI を活用してユーザーをサポートする Google の試験運用中のサービスです。旅行プランの案を出したり、ブログ記事の構成案を作成したりと、英語での公開から 2 か月弱の間に、すでに多くのユーザーに様々な方法でお使いいただいています。 そして、本日より Bard が日本語でも利用できるようになりました。「おいしい卵焼きを作るためのコツを教えて」や「夏休みの自由研究のアイデアを出して」など、 創造性と生産性を高めるパートナーとして、 bard.google.com から、Bard をぜひお試しください。 Bard とは Bard は、Google の大規模言語モデル( LLM : Large Language Model )である PaLM 2 を利用しています。LLM は言語のパターンを拾い上げること、それを使って文章の中で次に来る確率の高い単語を予測する
保険証や運転免許証との一体化など、デジタル化の鍵を握っていくのが、「マイナンバーカード」。 近い将来、小中学生の学校の成績も管理することになる可能性も。 政府は、小中学生の学習履歴や試験の成績を、マイナンバーカードにひも付け、オンラインで管理する仕組み作りに着手した。 そもそも文科省は、教育データの利活用を進めていて、児童・生徒の個人の学習意欲の変化や理解度をデータとして記録するのは、1人ひとりに合った効果的な学びの実現が目的。 蓄積された記録データをもとに、教員が、1人ひとりに合った指導を行うことができるとしている。 また政府は、こうした個人の学習データのマイナンバーカードへのひも付けを検討していて、2023年度以降の実現を目指している。 小中学生の学習履歴や試験の成績をマイナンバーカードにひも付けることについて、教育評論家の石川幸夫さんは、「メリットとしては、成績そのものが一元管理でき
グーグルは1月2日、従来のモデルよりも大幅に効率的でありながら、最先端の画像生成性能をもつテキスト画像AI生成モデル「Muse」を発表した。 競合モデルと同クオリティかつ超高速化 近年「Stable Diffusion」やOpenAIの「DALL-E 2」など、テキストから画像を生成するAIは驚くべき進化を見せている。グーグルもすでに「Imagen」と「Parti」という画像生成AIを発表しているが、「Muse」はそのどれとも異なる新しいモデルだ。
AI は、Google が現在取り組んでいる中で最も本質的なテクノロジーです。AI は、医師による病気の早期発見の支援や、自国語での情報へのアクセスなど、人々、ビジネス、コミュニティの潜在能力を引き出します。そして、数十億人の生活を大きく改善できる新しい機会を提供します。6 年前から、私たちが Google の方向性を AI 中心に再編し「世界中の情報を整理し、世界中の人がアクセスできて使えるようにする」という Google のミッションを果たす最も重要な方法に AI を据えているのは、これが理由です。 以来、私たちは全面的に AI への投資を継続し、Google AI と DeepMind のチームは最先端のテクノロジーを進化させています。現在、AI の計算規模は半年ごとに倍増していますが、それはムーアの法則よりもはるかに早いペースです。同時に、高度なジェネラティブ AI と大規模言語モ
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く