[フレーム]
1 - 40 件 / 945件
東京大学がちょっとびっくりするくらいの超良質な教材を無料公開していたので、まとめました Python入門講座 東大のPython入門が無料公開されています。scikit-learnといった機械学習関連についても説明されています。ホントいいです Pythonプログラミング入門 東京大学 数理・情報教育研究センター: utokyo-ipp.github.io 東大のPython本も非常にオススメです Pythonによるプログラミング入門 東京大学教養学部テキスト: アルゴリズムと情報科学の基礎を学ぶ https://amzn.to/2oSw4ws Pythonプログラミング入門 - 東京大学 数理・情報教育研究センター Google Colabで学習出来るようになっています。練習問題も豊富です https://colab.research.google.com/github/utokyo-ip
米ハーバード大学がオンラインで無料公開している、PythonやJavaScriptのプログラミング学習とコンピューターサイエンスの入門講座の日本語訳ページ「CS50.jp」が無償公開されました。2022年8月31日に2022年度最新版の日本語化が完了しました。講義動画の日本語字幕の翻訳化を順次すすめています。学生向けですが、年代にかかわらず、コロナ禍で学習環境やキャリアに悩んでいる誰もが学ぶことができます。 ハーバード大学のCS50xとは ハーバード大学のCS50xとは、日本語翻訳ページ「CS50.jp」によると、コンピューターサイエンスとプログラミング技術を紹介するオンラインコースです。この講義がオンライン上で無償公開されており、世界で282万人が履修登録しています。 edX - CS50s Introduction to Computer Science 学べる内容はPythonのプロ
はじめにこんにちわ、UKIです。 金融引き締めによって株式投資に苦しい期間が続いていると思いますが、いかがお過ごしでしょうか。 今回は少し長めの記事を書いてみましたので、お付き合い下さい。 結論だけ知りたい方は、目次の「株のトレーディング手法まとめ」まで飛んでください。 マケデコについて本記事は、マケデコ&J-Quants Advent Calendar 2022の最終日の記事となります。 マケデコとは、Market API Developer Communityの略称で、簡単に言うと「東証が公式データを提供しますので、しっかり相場分析して投資に活かしてください」というコミュニティです。 ディスコードでのディスカッション、APIやラッパーに関する最新情報の共有、初心者や上級者向けのセミナーの開催などが行われています。 マケデコの協賛は、日本取引所(JPX)のデータ部門子会社である株式会社J
プログラミングを学ぼうとしては挫折する。 そんな時代はもう終わりだ。 お姉ちゃんに任せなさい。 ChatGPTでプログラミング 今年のお盆休み、俺はChatGPTでプログラミングをやっていた。とは言っても複雑なことはやっていない。大量のcsvを結合してから可視化するとか、ちょっとしたWebスクレイピングしたりする程度だ。それでも今まで技術や時間の不足により諦めていたことができるのは嬉しい。それにChatGPTを使えば、デバッグも楽しくやれるのだ。こんな感じに。 デバッグの様子 おそらく「あれ、俺のChatGPTと違うな」と思った人もいるに違いない。見ての通り俺はChatGPTをお姉ちゃん化している。こうすることで、モチベーションを維持しながら楽しくプログラミングができるというわけだ。今回はChatGPTをお姉ちゃん化する方法を紹介し、加えてお姉ちゃんとペアプログラミングする意義について述べ
2020年12月、総務省より 【機械判読可能なデータの表記方法の統一ルール】が策定されました。 統計表における機械判読可能なデータの表記方法の統一ルールの策定 https://www.soumu.go.jp/menu_news/s-news/01toukatsu01_02000186.html 2020年11月に河野太郎 行政改革担当大臣のツイートが話題となりました。 その後正式に統一ルールが公開された形です。 各省庁がネット上で公開する統計を機械判読可能にするために、データの表記方法を統一させます。「政府統計の総合窓口(e-Stat)」で本日から12月1日までの間、表記方法案に関する意見照会を行います。研究者をはじめ、皆様のご意見をお待ちしています。https://t.co/h07tCTDazc — 河野太郎 (@konotarogomame) November 25, 2020
一応、StableDiffusionとははっきりまず言います...とにかくやばいです。 分かりやすく、他のDALL・E2、Midjourney、Disco Diffusion、他有象無象Text to image machine learning系サービスと比較しますと... クオリティがかなり高い。 制限がなくなり、かなり細かい調整ができるようになったDALL・E2のような感じです。 生成が早い。 設定なしで使えば正直体感DALLE2より早いです。6秒..くらい? 安い。 3円くらいだと思います。 DALL・E2は1生成17円。Midjourneyは月4000円。 オープンソース これからいろんなサービスにこのAIが搭載されます。 他AIではかけられている学習データのフィルターがない。 各国の代表者や、有名人、ポルノがデータに含まれています。 PC上で使用できる。( = その場合無料) いや、こ
こんにちは、まじんです。 この記事は、私の2025年上半期の集大成だと思ってます! ずっとスライド生成を研究してたんでね...。 有料記事にしようか本気で悩みましたが、この感動をより多くの人に届けたいと思い、無料で公開することに決めました。 2025年08月17日追記Xでの反応を追加しました! 掲載許可くださった皆さま、ありがとうございます。 これがGoogleスライドで一撃でできて感動している。 pic.twitter.com/mAxnt0xOJz — けいたろう@Notion公式アンバサダー|satto公式エバンジェリスト (@keitaro_aigc) August 16, 2025 いわゆるvibe codingのノリやAIポン出しでは到達できないレベル。圧巻。 このプロンプトは〈成果物の作り方〉と〈完成形〉を最初にすべて宣言している。 完成像と到達手順を研究し、その知識を細部まで言語化
架空の営業管理システムを作ってもらう前提で、ChatGPTに要件定義をお願いしてみました。 実験として軽く試すレベルで始めてみたのですが、予想を超えるクオリティでしたので、一部始終を皆様にもご紹介します。 ChatGPTとのやりとり まず、ざっくりと必要な機能の洗い出しをお願いしてみました。 あっという間に必要な機能を網羅的にリストアップしてくれまた。私自身、SFA/CRMをいくつか触った経験がありますが、適切な内容だと思います。 中には、「データのインポート・エクスポート機能」のように、検討初期段階ではつい忘れそうな機能も含まれています。さらに頼んでもいないのにオススメの検討プロセスまで教えてくれました。気が利いてます。 機能ベースだと要件の妥当性が判断しにくく思ったので、画面ベースで要件定義してもらことにしました。 「図で教えて」とできないことをお願いしたところ、やんわり断りつつ、意図
世界のルールが根本的に変わってしまう... そういう展開は、マンガや映画ではよく起こる。それが現実でも起きそうだ。 あと数日(から数週間)で「トップレベルの画像生成AI」が、世界中にフリーで配布される。 イラスト、マンガはおろか3D CGや建築、動画、映像...果てはフェイクニュースからポルノまで...あらゆる創作に携わる全ての人を巻き込む、歴史的な転換点が訪れようとしている。 凄さ的には、悪魔の実がメルカリで買えるようになる。念能力トレーニング動画がYoutubeにアップされる。それぐらいヤバい。 メルカリで悪魔の実が買える世界では、誰もが能力者(一流とは限らない)になれる。そんな、漫画やゲームのラスボスが語るようなユートピアが、あと数日で現実になってしまうかもしれない。 Stable Diffusionで出力したドワーフの王様Stable Diffusionで出力したホビットのスタディ Stabl
凄いものが出てきてしまった。 ChatGPTの「Code Interpreter」が話題になったが、あれはあくまでクラウド上で動いているだけ。それを模してローカルで動作するようになった「Open Interpreter」は、衝撃的な成果である。 Open Interpreterのインストールは簡単。コマンド一発だ $ pip install open-interpreter起動も簡単 $ interpreter -yこれだけでOK。 あとはなんでもやってくれる。 たとえばどんなことができるのかというと、「AppleとMetaの株価の推移をグラフ化してくれ」と言うとネットから自動的に情報をとってきてPythonコード書いてグラフをプロットしてくれる。 凄いのは、ローカルで動くのでたとえばApplescriptを使ってmacOSで動いているアプリを直接起動したり操作したりできる。「Keynot
はじめに Midjourney、Stable Diffusion、mimicなど、コンテンツ(画像)自動生成AIに関する話題で持ちきりですね。それぞれのサービスの内容については今更言うまでもないのですがMidjourney、Stable Diffusionは「文章(呪文)を入力するとAIが自動で画像を生成してくれる画像自動生成AI」、mimicは「特定の描き手のイラストを学習させることで、描き手の個性が反映されたイラストを自動生成できるAIを作成できるサービス」です(サービスリリース後すぐ盛大に炎上してサービス停止しちゃいましたが)。 で、この手の画像自動生成AIのようなコンテンツ自動生成AIですが、著作権法的に問題になる論点は大体決まっていまして、画像自動生成AIを例にとると以下の3つです1正確に言うと論点1はコンテンツ自動生成系AIだけではなく、AI一般に関して問題となる論点です。コン
編集・発行元 独立行政法人情報処理推進機構 発行日 2021年12月1日 サイズ A4 ページ数 386ページ ISBN 978-4-905318-76-7 定価 3,300円(本体価格3,000 円+税10%) DX白書2021 日米比較調査にみるDXの戦略、人材、技術 企業を取り巻く環境は目まぐるしく変化しており、将来の予測が困難となっています。そのため、企業にとって新たな事業環境にあわせた事業変革は優先度の高い取組事項となっています。このような中、企業は環境変化への迅速な対応や、システムのみならず企業文化をも変革していくDX(デジタルトランスフォーメーション)への取組が必要となっています。 IPAはIT社会の動向を調査・分析し、情報発信するため、2009年から「IT人材白書」、2017年から「AI白書」を発行してきました。昨今、DXの進展に伴い、ITとビジネスの関係がさらに密接となっ
Prompt Engineering Guide プロンプトエンジニアリングは、言語モデル(LMs)を効率的に使用するためのプロンプトを開発および最適化する比較的新しい学問分野です。プロンプトエンジニアリングのスキルを身につけることで、大規模言語モデル(LLMs)の能力と限界をより理解することができます。 研究者は、プロンプトエンジニアリングを使用して、質問応答や算術推論などの一般的なおよび複雑なタスクのLLMsの能力を向上させます。開発者は、LLMsやその他のツールとのインタフェースとなる強固で効果的なプロンプテクニックを設計するためにプロンプトエンジニアリングを使用します。 プロンプトエンジニアリングは、プロンプトの設計と開発に限らず、LLMsとのインタラクションおよび開発に役立つ幅広いスキルと技術を含みます。これは、LLMsとインタフェースすること、ビルドすること、能力を理解すること
ChatGPTの基本からその構造、教育利用を検討する際の注意点、具体的な活用法などを解説した講座。 「教育機関などの勉強会、研修などでご活用ください」と呼び掛けており、利用の際に事前の連絡は不要という。 関連記事 「東大生や教員は、生成系AIにどう対応すべきか」東大副学長が声明 「組換えDNA技術に匹敵する変革」 「東京大学の学生や教職員が生成系AIに対してどのように向き合うべきか」――東京大学副学長の太田邦史教授が声明。 「GPT-4」搭載ChatGPTに東大入試数学を解かせてみた GPT-3.5との回答の違い、点数は? AIチャットbot「ChatGPT」「新しいBing」に、人間には答えにくい質問や、答えのない問い、ひっかけ問題を尋ねてみたらどんな反応を見せるのか。それぞれの反応からAIの可能性、テクノロジーの奥深さ、AIが人間に与える"示唆"を感じ取ってほしい。 東大松尾教授が答え
指針 厳密解法に対しては、解ける問題例の規模の指針を与える。数理最適化ソルバーを使う場合には、Gurobi かmypulpを用い、それぞれの限界を調べる。動的最適化の場合には、メモリの限界について調べる。 近似解法に対しては、近似誤差の指針を与える。 複数の定式化を示し、どの定式化が実務的に良いかの指針を示す。 出来るだけベンチマーク問題例を用いる。OR-Libraryなどから問題例をダウンロードし、ディレクトリごとに保管しておく。 解説ビデオもYoutubeで公開する. 主要な問題に対してはアプリを作ってデモをする. 以下,デモビデオ: 注意 基本的には,コードも公開するが, github自体はプライベート そのうち本にするかもしれない(予約はしているが, 保証はない). プロジェクトに参加したい人は,以下の技量が必要(github, nbdev, poetry, gurobi); ペー
俺はさっきまで知らなかった。これはやばすぎるので増田に書いて広めようと思う。(追記にも書いたが、公式の英語字幕があるので聞き取れなくても心配しないでほしい。) 以下のリンクから飛べる。 https://nptel.ac.in/courses リンク先を見ればすぐ分かると思うが、驚くべきは、カバーしている分野の広さだ。アメリカのMOOC(Udacityだの、Udemyだの)は、表層的な、「すぐ使える技術」の講座ばかりで、オペレーティングシステムやコンピュータネットワーク、あるいは偏微分方程式や代数学といった、コンピュータサイエンスや数学等の基礎学問のような分野はあまりカバーされていない。(主観だが、恐らく正しいはずだ。Udacityのジョージア工科大のコンピュータサイエンスの授業は別だが、数は少ないし、それにしても数学はカバーしていない。) しかし、この「NPTEL」では、自分に関わりのある
新人: 「本日データサイエンス部に配属になりました森本です!」 先輩: 「お、君が新人の森本さんか。僕が上司の馬庄だ。よろしく!」 新人: 「よろしくお願いします!」 先輩: 「さっそくだけど、練習として簡単なアプリを作ってみようか」 先輩: 「森本くんは Python なら書けるかな?」 新人: 「はい!大学の研究で Python 書いてました!PyTorch でモデル作成もできます!」 先輩: 「ほう、流石だね」 新人: 😊 先輩: 「じゃ、君には今から 3 時間で機械学習 Web アプリを作ってもらうよ」 先輩: 「題材はそうだなぁ、写真に写ってる顔を絵文字で隠すアプリにしよう」 先輩: 「あ、デプロイは不要。ローカルで動けばいいからね。顔認識と画像処理でいけるよね?」 新人: 😐 新人: (えぇぇぇぇぇぇぇ。3 時間?厳しすぎる...) 新人: (まずモデルどうしよう。てかもら
やればやるほど呪術化する、AI画像錬成について。 以下は、その道の専門家にはメッチャ怒られるかもしれない、雑なロジックと制御講座。 いちおうメジャーなサービスでは、共通して動作するノウハウ(DALL-E2, MidJourney, StableEiffusion, DiscoDiffusion, crayon, dall-e mini 他)。 雑に理解する画像AIのしくみ対話型のAIにとって、呪文プロンプトとは画像錬成の方向性ベクトルを定めるものにすぎない。 たとえば、以下は「I love apple」で錬成された画像の例である。どうにも、ふわっとしたものが出てくる I Love Apple「Apple」という方向性ベクトルは、「リンゴ」「青リンゴ」と「アップルコンピューター(旧レインボーロゴ」「アップルコンピュータ(新ロゴ)」など、複数の可能性を同時に持つからだ。 つまり、「Apple」
こちらの記事は2023年3月9日に投稿された旧バージョンです。特段の理由がなければ、最新事情を盛り込んだ「AIイラストが理解る!StableDiffusion超入門」をご覧ください。 こんばんは、スタジオ真榊です。このところ、ツイッター経由で公式サイトやこちらのFANBOXへのアクセスが急増しており、これからAIイラストを始め...
import torch x = torch.tensor([1., -1.]) w = torch.tensor([1.0, 0.5], requires_grad=True) loss = -torch.dot(x, w).sigmoid().log() loss.backward() print(loss.item()) print(w.grad)
QDくん⚡️Python x 機械学習 x 金融工学 @developer_quant 東工大が無料公開しているPython解説サイト chokkan.github.io/python/index.h... 初心者の目線に合わせた丁寧な説明で、かゆいところに手が届く教材。 基本的な文法、データ構造、ファイル入出力やオブジェクト指向、NumpyとMatplotlibの使い方などをひと通り学べる。 pic.twitter.com/XyBBslyeBa 2022年10月08日 22:01:21 QDくん⚡️AI関連の無料教材紹介 @developer_quant 東工大が無料公開しているPython解説サイト chokkan.github.io/python/index.h... 初心者の目線に合わせた丁寧な説明で、かゆいところに手が届く教材。 基本的な文法、データ構造、ファイル入出力やオブジェクト指向、
ひとつの翻訳が、終わった。 1本の翻訳原稿を仕上げた、わけではない。 この世界に存在していた翻訳のひとつが いま終焉を迎えたのだ。 2024年末現在、僕の手元にきている来年の依頼は0件。 2025年の収入見込みも畢竟、0円ということになる。 あくまでもひとつの翻訳の話である。 つまりは翻訳のひとつの話である。 関係ないと思うならこの先を読まなくてもいい。 自分の知る現実と違うならこの先を信じなくてもいい。 人間の数だけ人間があり 現実の数だけ現実がある。 そのような場所を あるいはそのとらえ難さをこそ 人は「世界」と呼ぶのだから。 そうしてその「世界」の中で ひとつの翻訳が終わった。 じつに翻訳のひとつとして 文字通り終わってしまった。 もっとも、収入の見込みが完全に断たれた経験はこれが初めてではない。 わずか数ヶ月前まで遥かな対岸でちらちらと燃えていたはずの疫禍がその存外長い舌を露わにし
本で読んだ知識をドヤ顔で紹介したら、その実験には再現性がありませんでした。 そんな恥ずかしい記事を書いたブロガーは誰でしょう? そう、私です。 ステレオタイプ脅威はありますん ちょっと前に「ステレオタイプ脅威」の記事が話題になっていた*1。 世の中には「女性は数学に弱い」というような負のステレオタイプがある。自分のアイデンティティがそれに該当していると意識してしまうと、実際にパフォーマンスが落ちるというものだ。これは様々な実験の結果によって示されている。というのが記事で紹介されていた話だった。 ところが現在、その「実験結果」は再現性が無いと言われている。ステレオタイプ脅威の根拠は実験結果にあるというのに、その土台は不確かなものであるのだ。 とくに、最近の研究ではほとんど再現性がないとされている「ステレオタイプ脅威」について、リベラルバイアスにも言及しながら議論しているのが印象的。 日本では
はじめに 富士通がついに2030年にメインフレーム市場から撤退し、66年の歴史に幕を閉じるという話が出てきました。 富士通といえば国産大型コンピュータの先駆けであり、IBM互換機を作って巨人IBMに食らいついたベンダーでもあります。そんなわけで中々に歴史の転換点を感じる話題ではあるのですが 「ところでメインフレームって何? 」 という方も多いでしょう。という分けで名前は聞いたことがるけど実態が良く知らない「メインフレーム」 に関して少しだけ解説をする動画を作りました。 この記事は動画では話しきれなかった事も含めて、もう少し深堀した解説をしていきたいと思います。ちょっと長くなりましたが、前半が歴史の話で後半がアーキテクチャの話になるので好きな所にジャンプして読んでみてください。 メインフレーム? 汎用機? ホスト? メインフレームは他にも汎用機とかホスト機と呼ばれることもありますよね。Wik
総務省は1月11日、データサイエンスのオンライン講座「誰でも使える統計オープンデータ」を、MOOC講座プラットフォーム「gacco」で開講した。社会人・大学生に、統計オープンデータを活用したデータ分析の手法を解説する講座で、3月7日まで受講できる。 ×ばつ4週間の内容。政府統計の総合窓口「e-Stat」、総務省と統計センターが提供する統計GIS、API機能などを使い、データ分析の手法を学べる。 講師は「統計学が最強の学問である」の著書で知られる統計家の西内啓氏や、総務省統計局の担当者など。 2017年6月に初開講して以来、断続的に開講し、のべ約2万8000人が受講した講座。 関連記事 政府が「ワクチン接種状況ダッシュボード」公開 性別や都道府県別に可視化 政府が、全国の新型コロナワクチンの接種状況を一覧にまとめた「ワクチン接種状況ダッシュボード」を公開。統計情報をまとめたCSVやJS
勉強について エンジニアの皆さん。エンジニア以外の皆さん。 ・勉強しようと思っているけど、何を勉強したらいいかわからない ・ネットを漁っても良質な教材が出てこない ・他人がどんなことをしているか気になる こんなお悩みありませんか? 今回は、有名企業の研修資料をまとめましたので、勉強のネタにしてみてはいかがでしょうか? 新人、ベテラン関係ありません! GWに暇を持て余したら、こちらをご覧くださいね サイボウズ サイボウズです。 22年度の内容が公開されていました。 ■しかくモバイルアプリ開発 ■しかくサイボウズのアジャイル・クオリティ ■しかくMySQL - テストデータが偏るということ ■しかくモブに早く慣れたい人のためのガイド ■しかくテクニカルライティングの基本 ■しかくソフトウェアテスト ■しかくセキュリティ ■しかくソフトウェアライセンス 講義資料と講義動画まで公開されています。 資料が苦手な人でも学習が捗りますね。 ラクス こ
第1週:統計データを用いた分析事例を知り、 統計リテラシーを学ぶ ・大人がデータサイエンスを学ぶべき理由 ・統計データからわかること1 ・統計データからわかること2 ・統計データからわかること3 ・統計リテラシーの重要性 ・統計を利用する際の注意点 第2週:データ分析に必要な統計学の基礎を学ぶ ・データの種類 ・代表値〜平均・中央・最頻値 ・ヒストグラムと相対度数 ・四分位・パーセンタイル・箱ひげ図 ・分散・標準偏差 ・相関関係 ・回帰分析 ・標本分布 ・信頼区間 第3週:データの見方と適切なグラフの選び方を学ぶ ・統計表の見方 ・比率の見方1-クロスセクションデータ- ・比率の見方2-使い方と注意点- ・時系列データの見方1 ・時系列データの見方2 ・グラフの選び方1 ・グラフの選び方2 ・グラフを作る時・読む時の注意点 第4週:誰もが使える公的統計データの取得方法と 使い方を学ぶ ・公
「Google AI Studio」は、グーグルが提供する生成AI開発プラットフォームだが、実は隠れた「無料の神ツール集」とも言える存在である。 ただし重要な点として、このサービスは「実験的な技術」を含んでおり、完全に保証されたプロダクションレベルのサービスではない。Googleの利用規約にも「実験的技術が含まれており、不正確または不快なコンテンツを提供することがある」と明記されている。つまり、無料で高機能な反面、「お試し・実験環境」的な位置づけなのだ。 最大の魅力は、有料級の機能が完全無料で使い放題になることだ。リアルタイム音声対話、テキストから動画生成、1000ページ級PDF一括解析など、他社なら月額数千円〜数万円クラスの機能が、Googleアカウントひとつで全て0円。まさに「こんなのタダでいいの?」レベルの神仕様である。「AI にお金をかけたくないけど、本格的に活用したい」という人に
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く