[フレーム]
1 - 40 件 / 138件
東京大学がちょっとびっくりするくらいの超良質な教材を無料公開していたので、まとめました Python入門講座 東大のPython入門が無料公開されています。scikit-learnといった機械学習関連についても説明されています。ホントいいです Pythonプログラミング入門 東京大学 数理・情報教育研究センター: utokyo-ipp.github.io 東大のPython本も非常にオススメです Pythonによるプログラミング入門 東京大学教養学部テキスト: アルゴリズムと情報科学の基礎を学ぶ https://amzn.to/2oSw4ws Pythonプログラミング入門 - 東京大学 数理・情報教育研究センター Google Colabで学習出来るようになっています。練習問題も豊富です https://colab.research.google.com/github/utokyo-ip
指針 厳密解法に対しては、解ける問題例の規模の指針を与える。数理最適化ソルバーを使う場合には、Gurobi かmypulpを用い、それぞれの限界を調べる。動的最適化の場合には、メモリの限界について調べる。 近似解法に対しては、近似誤差の指針を与える。 複数の定式化を示し、どの定式化が実務的に良いかの指針を示す。 出来るだけベンチマーク問題例を用いる。OR-Libraryなどから問題例をダウンロードし、ディレクトリごとに保管しておく。 解説ビデオもYoutubeで公開する. 主要な問題に対してはアプリを作ってデモをする. 以下,デモビデオ: 注意 基本的には,コードも公開するが, github自体はプライベート そのうち本にするかもしれない(予約はしているが, 保証はない). プロジェクトに参加したい人は,以下の技量が必要(github, nbdev, poetry, gurobi); ペー
新人: 「本日データサイエンス部に配属になりました森本です!」 先輩: 「お、君が新人の森本さんか。僕が上司の馬庄だ。よろしく!」 新人: 「よろしくお願いします!」 先輩: 「さっそくだけど、練習として簡単なアプリを作ってみようか」 先輩: 「森本くんは Python なら書けるかな?」 新人: 「はい!大学の研究で Python 書いてました!PyTorch でモデル作成もできます!」 先輩: 「ほう、流石だね」 新人: 😊 先輩: 「じゃ、君には今から 3 時間で機械学習 Web アプリを作ってもらうよ」 先輩: 「題材はそうだなぁ、写真に写ってる顔を絵文字で隠すアプリにしよう」 先輩: 「あ、デプロイは不要。ローカルで動けばいいからね。顔認識と画像処理でいけるよね?」 新人: 😐 新人: (えぇぇぇぇぇぇぇ。3 時間?厳しすぎる...) 新人: (まずモデルどうしよう。てかもら
QDくん⚡️AI関連の無料教材紹介 @developer_quant 金融技術職/ChatGPT等の生成AI,データサイエンス,プログラミングの勉強に役立つ情報を発信/良質な無料教材,スライド,動画等を紹介/3千ポストで5万5千フォロワー獲得/過去の人気投稿はハイライトを参照/金融工学x機械学習ブログ運営 https://t.co/bQubHSMk4e /Amazonアソシエイト参加中 https://t.co/2Zd5MRXGw3 QDくん⚡️AI関連の無料教材紹介 @developer_quant オライリーの教育的な良書「Think Python」第2版は日本語訳が無料公開されている。 cauldron.sakura.ne.jp/thinkpython/th... ・初心者がつまずきやすい点を先回りして説明 ・各章の終盤にデバッグのヒントが書いてある pic.twitter.com/RP
オブジェクト指向 1. オブジェクト指向の起源 2003年チューリング賞の受賞者アラン・ケイさんはよくオブジェクト指向プログラミングの父と称されます。ご本人も憚ることなく、幾度、公の場で発明権を宣言しています。しかし、ケイさんは「C++」や「Java」などの現代のオブジェクト指向言語を蔑ろにしています。これらの言語は「Simula 67」という言語を受け継いだもので、私が作った「Smalltalk」と関係ないのだとケイさんは考えています。 オブジェクト指向という名称は確かにアラン・ケイさんに由来するものです。しかし、C++とJavaで使われている現代のオブジェクト指向は当初のと結構違います。ケイさん自身もこれらの言語を後継者として認めないです。では、ケイさん曰くC++とJavaの親であるSimula 67という言語はどんな言語でしょうか。ここで、簡単なサンプルコードを見てみましょう。 Cl
2020年も多くの素晴らしい技術書がたくさん出ました. その中でも(昨今のトレンド・流行りも手伝ってか)Python本の多さ・充実度合いは目立つものがあります. (このエントリーを執筆した12/19時点で)Amazonの本カテゴリで「Python」と検索すると1,000件以上出てきます*1. これだと目的の本にたどり着くだけで疲れそうです. このエントリーでは, 主にPythonを学びたい・現在使っている方 手元の業務を効率化したり, RPAっぽいことをやりたい方 エンジニア・データサイエンティストとして業務や趣味・個人開発をされている方 を対象に, 今そして来年2021年に読んでおきたいPython関連書籍(と抑えておきたいサービス) をエンジニアでありデータサイエンティストである私独自の視点で紹介します*2. なおこのエントリーはこのブログで例年執筆している「Python本まとめ」の2
はじめに 本書は,筆者が長年書き溜めた様々な実務的な最適化問題についてまとめたものである. 本書は,Jupyter Laboで記述されたものを自動的に変換したものであり,以下のサポートページで公開している. コードも一部公開しているが,ソースコードを保管した Github 自体はプライベートである. 本を購入した人は,サポートページで公開していないプログラムを 圧縮ファイル でダウンロードすることができる. ダウンロードしたファイルの解凍パスワードは<本に記述>である. 作者のページ My HP 本書のサポートページ Support Page 出版社のページ Pythonによる実務で役立つ最適化問題100+ (1) ―グラフ理論と組合せ最適化への招待― Pythonによる実務で役立つ最適化問題100+ (2) ―割当・施設配置・在庫最適化・巡回セールスマン― Pythonによる実務で役立つ
はじめに Pythonはコードが汚くなりがち(個人的にそう思う) そんなPythonくんを快適に書くための設定を紹介します。 拡張機能編 ここでは Pythonを書きやすくするため の拡張機能を紹介していきます。 1. Error Lens before 「コード書いたけど、なんか波線出てるよ💦」 記述に問題があった場合、デフォルトでは波線が表示されるだけ。。。 after Error Lensくんを入れることによって 波線だけでなくエディタに直接表示される。 はい、有能〜 2. indent-rainbow before Pythonくんは インデントでスコープを認識している。 for の f から下に線が伸びてるけど、ちょっと見にくいなぁ after 色が付いてちょっと見やすくなった! 3. Trailing Space before 一見、普通に見えるコード after 末尾にある
前提として、Stable Diffusionでエロ画像を出そうとしてもsafety checkerという機能が入っており、センシティブな画像を出そうとすると黒塗りになる。 (Stable DiffusionのSaaSであるDream Studioはぼかしだが、多分別の技術) https://github.com/huggingface/diffusers/releases/tag/v0.2.3 そこでGoogle Colabでちゃちゃっと環境を作り、なおかつNSFWを回避する。 1. 下記のリンクでノートを開く https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_diffusion.ipynb 2. 下記の箇所を書き換える vvvvvvvvvvvvvvvvvv f
Google、AIを使って非構造化テキストから構造化データを抽出するオープンソースPythonライブラリ「LangExtract」をリリース Googleは2025年7月30日、非構造化テキストから構造化データを抽出するオープンソースのPythonライブラリ「LangExtract」をリリースした。 Introducing LangExtract: A Gemini powered information extraction library -Google Developers Blog ✨Announcing LangExtract! ✨ Our new open-source Python library for information extraction, powered by #Gemini. ✅ Turn text into structured data ✅ Trace
はじめに システム作ってるとかライブラリ作ってるみたいなある程度Pythonを綺麗に1書くことが求められる方々に向けた記事です。 (機械学習系のライブラリを使うためにPython書いてる方とか、初学者の方にはちょっとあわないかも知れません) 綺麗に書くための作法の難しさって共有が面倒なところだと思うんですよね。その書き方は間違いじゃない、間違いじゃないけどもっといい書き方があるぞみたいなやつってなかなか指摘し辛いですし、じゃあ1人に対してレビューしたら他のメンバーにはどう伝える?そもそも伝える必要?俺の工数は?みたいになりがちです。 一番いいのはこういう時はこう書く!みたいなドキュメントを作って「ドキュメント違反です」ってレビューをしてあげることなんですが、まーそれもそれで超面倒じゃないですか。なのでこの記事がそのドキュメントの代わり、とまではいかなくとも礎くらいになればいいなと思って書き
- はじめに - Pythonのパッケージ管理ツールは、長らく乱世にあると言える。 特にpip、pipenv、poetryというツールの登場シーン前後では、多くの変革がもたらされた。 本記事は、Pythonパッケージ管理ツールであるpip、pipenv、poetryの3つに着目し、それぞれのツールに対してフラットな背景、技術的な説明を示しながら、所属企業内にてpoetry移行大臣として1年活動した上での経験、移行の意図について綴り、今後のPythonパッケージ管理の展望について妄想するものである。 注意:本記事はPythonパッケージ管理のベストプラクティスを主張する記事ではありません。背景を理解し自らの開発環境や状態に応じて適切に技術選定できるソフトウェアエンジニアこそ良いソフトウェアエンジニアであると筆者は考えています。 重要なポイントのみ把握したい場合は、各章の最後のまとめを読んで頂
Google、ORMが生成するSQLが遅いときの調査を容易にする「sqlcommenter」をオープンソースで公開。Rails、Spring、Djangoなど主要なフレームワークに対応 SQL文を直接書かなくとも、自動的にSQL文を生成、実行してくれるORM(Object-Relational Mapper)は、プログラミングを容易にしてくれる技術としてRailsやHibernate、Springなどさまざまなフレームワークなどで活用されています。 一方で、ORMが生成するSQL文はときに複雑に、あるいは非効率なものとなり、データベース処理の遅さにつながることもあります。 このとき、SQL文の生成と実行を明示的にコードとして記述する必要がないというORMの特徴が、なぜデータベース処理が遅くなったのか、どのようなSQL文が生成され、そのどこに原因があるのか、といった調査を難しくている面があり
自分がよく使用する日本語自然言語処理のテンプレをまとめたものです。 主に自分でコピペして使う用にまとめたものですが、みなさんのお役に立てれば幸いです。 環境はPython3系、Google Colaboratory(Ubuntu)で動作確認しています。 Pythonの標準機能とpipで容易にインストールできるライブラリに限定しています。 機械学習、ディープラーニングは出てきません!テキストデータの前処理が中心です。 前処理系 大文字小文字 日本語のテキストにも英語が出てくることはあるので。 s = "Youmou" print(s.upper()) # YOUMOU print(s.lower()) # youmou 全角半角 日本語だとこちらのほうが大事。 全角半角変換のライブラリはいくつかありますが、自分はjaconv派。 MIT Licenseで利用可能です。 import jaco
G Suiteのドライブ上の課題にアクセスするにはECCSクラウドメール(G Suite)アカウントが必要です。以下のページからECCSクラウドメールアカウントでG Suiteにログイン後にアクセスしてください。 ECCSクラウドメールアカウントはUTokyo Accountの利用者メニューから申請・取得してください。 UTokyo Account ECCSクラウドメール利用方法 個人のGoogle (Gmail)アカウントでログインしている状態ではアクセスできません。必ずログアウトしてからECCSアカウントでログインしなおしてください。
PHPとPythonとRubyの連想配列のデータ構造がそれぞれ4〜5年ほど前に見直され、ベンチマークテストによっては倍以上速くなったということがありました。具体的には以下のバージョンで実装の大変更がありました。 PHP 7.0.0 HashTable高速化 (2015/11) Python 3.6.0 dictobject高速化 (2016/12) Ruby 2.4.0 st_table高速化 (2016/12) これらのデータ構造はユーザーの利用する連想配列だけでなく言語のコアでも利用されているので、言語全体の性能改善に貢献しています1。 スクリプト言語3つが同時期に同じデータ構造の改善に取り組んだだけでも面白い現象ですが、さらに面白いことに各実装の方針は非常に似ています。独立に改善に取り組んだのに同じ結論に至ったとすれば興味深い偶然と言えるでしょう2。 本稿では3言語の連想配列の従来実
なぜ令和にもなって動的型付け言語を使うのか シフトレフトという概念が生まれたのは二十年以上も前のはずだ。 それにもかかわらず動かしてみるまで答え合わせもできない言語で開発をするという発想自体がどうかしている。 同じ動的型付けといってもJavaScriptはブラウザという事情があるし、型の表現力に優れたTypeScriptがあるからまだよい。 しかし、Pythonはどうだ。他にいくらでも選択肢があるなかで、サーバーサイドにわざわざ選定する言語ではなかろう。 貧弱な型ヒント、しかも書いたところで大した効用もない。 使っている外部ライブラリにひとつでも型ヒントがクソなものがあれば即座に破綻する。 型というガードレールもシートベルトもなしで糞を撒き散らしながらする開発にはうんざりだ。 シンタックスもキモい 動的型付けもさることながら、シンタックスもキモい。とにかく思考を妨げる語順になっている。 m
ChatGPT,使っていますか? ChatGPTは文章を要約したり、プログラム作ってくれたり、一緒にブレストしてくれたりして本当に便利なのですが、社内情報などの独自データに関する情報については回答してくれません。 プロンプトに情報を記述して、そこに書かれている情報から回答してもらう方法もありますが、最大トークン4000の壁がありますので、限界があるかと思います。 この課題についてなんとかならないかと考えて色々と調べて見たところ、解決する方法が見つかり、いろいろと検証をして見ましたのでその結果をシェアしたいと思います。 サンプルコード(GoogleColab) 百聞は一見にしかずということで、実際に試したサンプルは以下にありますので、まずは動かしてみることをお勧めします。 このコードを上から順番に動かすと、実際にインターネット上から取得したPDFファイルに関する内容をChatGPTが回答して
2021年も数多くのプログラミングやPythonを扱った素晴らしい書籍とたくさん出会いました. 私はリアルの本屋さんに行くのがとても好きで(ECの本屋さんも好きですが), 技術書のコーナーには必ずと言っていいほど足を運ぶのですが, 年々「Python」というラベルが付いた棚の領域が広がっている気がします. プログラミング初心者でPythonからやりたいけど何から読めばいいのか🤔 実務に役立つような参考書籍ってどうやってみつければいいかわからない😇 よりビジネスに役立つ, 実践的な事例をしりたい💪🏻 という, 割とありそうなニーズにお応えすべく, 2022年いや, 今この瞬間に読んでおきたい・抑えておきたいPython関連書籍をまとめました! 2011年頃からPythonを使って仕事をし始め, 今もエンジニアリングからコンサルティング, マネジメントをやっている私独自の視点で, オス
各機能とツールについて、説明していきます。 エディタ Visual Studio Code エディタやIDE(統合開発環境)は好きに選んでいただければ良いとは思いますが、特に希望がないならば、Visual Studio Codeを選んでおけば間違いないでしょう。 Pythonを含む幅広い言語に対応し、豊富な拡張機能を備えている非常にリッチなエディタです。とりわけPythonプロジェクトについては、これさえ有れば、特にIDEなどは必要ないと思います。 インストールは↓から。 バージョン管理ソフト Python3系は日夜アップデートされていて、2022年12月現在の最新verは、3.11.1が提供されています。 とはいえ、プロジェクトによっては、3.7.1までしか動作が担保されていないもの、3.9.0で現在開発中のもの...などがあります。最新のPythonが常に必要、というわけでは決してなく
📌 はじめに Pythonで開発を行うにあたり、リンタやフォーマッタ、パッケージマネージャ等のツールの選定は非常に重要な問題です。一方で歴史的な経緯もあり、沢山の選択肢から何を選ぶべきか情報がまとまっていないように感じました。この記事では2021年9月時点でモダンと言えるであろう開発環境を紹介します。基本的にはシェアが高いこと、著名なパッケージで使用されていることを主な選定理由としており、また特定のエディタに依存しないことを前提とします。 本記事で紹介する内容は一つのテンプレートに近く、必要に応じてカスタマイズするもよし、そのまま使ってもよし、として参考になればと思います。(CI/CDについてはPythonとは独立した問題なので触れません。またドキュメント生成はSphinxを推しますが、必須ではないので今回は割愛します。) 📄 要約 "モダン"な開発環境を箇条で列挙すると下記の通りです
You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
はじめに Pythonは習得が容易な言語として知られていますが、本格的な開発では初心者レベルの知識だけでは対応できない場面が多々あります。この記事では、Python中級者になるために押さえておくべき29個のテクニックを、重要度別に解説していきます。基本文法は理解しているものの、さらなるステップアップを目指すプログラマーにとって、必読の内容となっています。 これらのテクニックを習得することで、より効率的で保守性の高いコードが書けるようになり、実務レベルのPythonプログラミングに対応できるようになるでしょう。
LLVMやSwiftを作ったChris LattnerがCEOをやっている会社が、Pythonの使用感とC言語並の性能を併せ持つ言語としてMojoをアナウンスした。 まだ手元で試せる状態でリリースされてはいないが、最大35000倍Pythonより速いという。 Mojo🔥 combines the usability of Python with the performance of C, unlocking unparalleled programmability of AI hardware and extensibility of AI models. Also, it's up to 35000x faster than Python 🤯 and ... deploys 🏎 pic.twitter.com/tjT09U4F80— Modular (@Modular_AI) May
画像はUnsplashより 在宅時間が増加したであろう現在は、学生や社会人が人工知能(AI)やデータサイエンスについて身につける絶好のチャンスと言える。「AIについて何か勉強したい」「統計学について知りたい」という人も少なくないのでは。 近頃、Pythonなどのプログラミングについて勉強したり、データサイエンスについて知識を深めたりできる学習コンテンツが無料で公開される機会が増えつつある。そこで、2021年1月27日現在、無料で学べるAIやデータサイエンス関連の学習コンテンツを集めてみた。 総務省、社会人のためのデータサイエンス入門を無料開講 総務省は2021年1月12日開講した「誰でも使える統計オープンデータ」に先駆け、「社会人のためのデータサイエンス入門」を特別開講している。登録料および受講料は無料。 本講座では入門編として、統計学の基礎やデータの見方・データの取得方法などを学べる。統
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? Information 2024年1月8日: pandas , Polars など18を超えるライブラリを統一記法で扱える統合データ処理ライブラリ Ibis の100 本ノックを作成しました。長期目線でとてもメリットのあるライブラリです。こちらも興味があればご覧下さい。 Ibis 100 本ノック https://qiita.com/kunishou/items/e0244aa2194af8a1fee9 はじめに どうもこんにちは、kunishouです。 この度、PythonライブラリであるPolarsを効率的に学ぶためのコンテンツとして
この記事は、以下のハローワークインターネットサービスから求人情報を自動で取得する試みを記録したものです: www.hellowork.mhlw.go.jp まずは、ソースコードと実行結果をお見せし、後ほどこの記事を書いた経緯などを話します。 ソースコード:HelloWork_Scraping_ST.py from selenium import webdriver from selenium.webdriver.support.ui import Select import time from bs4 import BeautifulSoup import re # ハローワークインターネットサービスのURL url = "https://www.hellowork.mhlw.go.jp/" # 以下からご自分で使用しているChromeのバージョンに合ったChromeDriverをダウンロ
注:本書籍は執筆途中です。 この書籍は、とにかく筆者の知りえる研究開発関連の知識をすべて吐き出すことを目的に書かれています。 Pythonを用いた研究を進めるのに必須の環境構築&開発手法の個人的ベストプラクティスをまとめました。 実行環境の構築/ディレクトリ構成/プログラムの整備/vscodeでのデバッグなど、とにかく知っておくと余計な苦しみから解放される情報を共有します。 可能な限り継続的にアップデートしていこうと思っています。
デジタル庁は、法令標準 XML スキーマに準拠した、現行の法令データをe-Gov法令検索というサイト上で公開しています[1]。今回、この法令XMLをパースするPythonライブラリ ja-law-parser をつくり、法令データの全文検索をしてみました。 この記事では、日本の法令とそのデータ構造、法令XMLパーサについて解説し、最後に、それらを使った法令データの全文検索システムを実装する方法をご紹介します。法令検索の実装についても、GitHubリポジトリで公開しています。 この記事は、情報検索・検索技術 Advent Calendar 2023の16日目の記事です。 法律と法令 法律とは 法律の制定と公布 法律と法令の違い 法律の改正 法令のデータ構造 e-Govの法令データ 法令標準XMLスキーマ 法令番号と法令ID 題名 本則と附則 条・項・号 編・章・節・款・目 法令XMLパーサ:
目次 1.はじめに 2.コーディング 3.コンテナ化 1. はじめに 友人に「PythonでAPIをサクッと作ってよ」と言われたのでシンプルなREST APIを作ってみた。 作ったものを渡すだけでなく作り方も教えて欲しいとのことなので、ここに記事として掲載する。少し手順書のような記載なため、初学者向けかもしれない。 Pythonと聞いて「Djangoでも使うか?」と思いつつも、よりサクッと感のあるフレームワークを探してみたところ FastAPIなるものがあり、今回はこれを採用してみた。 公式より引用 FastAPI は、Pythonの標準である型ヒントに基づいてPython 3.6 以降でAPI を構築するための、モダンで、高速(高パフォーマンス)な、Web フレームワークです。 FastAPI には Swagger UI と ReDoc の両スタイルのドキュメントを自動で生成してくれる機
先日プログラミング言語 Mojo と呼ばれるもののアナウンスメントがあった。この言語のデザインが私のスイートスポットに刺さる感じだったので、今のうちから注目している。使いたいなというか、将来使うことになりそうな言語なので簡単に何ができそうかを調査してまとめておきたい。 ウリとしては「C 並のパフォーマンスが出る Python」といったところだろうか。 k0kubun さんからコメントを裏でもらって、これって要するに並列化とか SIMD 化とか入れたら35,000倍のパフォーマンスが出るようだけど、これは Python の部分とは呼べなくて、素の Python 動かして本当にそういえるかは怪しくない?とのことで、判断保留します 🙇🏻♀️ k0kubun さんありがとう 言語のデザインとしては、AI 開発に向けたプログラミングを提供できるよう設計されていると感じる。表側は Python
この記事は株式会社Nuco Advent Calendar 2022の9日目の記事です。 はじめに いきなりお馴染みの「キャッチーでウィットでセンセーショナルな」タイトルで失礼します。 私自身、業務の中でpandasに大変お世話になっており、自戒も込めてpandasの「アンチパターン」をまとめてみました。 この記事を読んで、より快適なpandasライフを送っていただけると嬉しいです。 対象読者 Pythonを使ったデータ分析や機械学習に携わる方 この記事はpandasの基本的な使い方を解説するものではないので注意してください。 表形式ファイルを加工する必要がある方 pandasの強みはリレーショナルなデータ全般です。必ずしもデータ分析や機械学習だけが守備範囲ではありません。 pandasとは pandasの公式ドキュメントの概要には、以下のように記載してあります。 pandas is a
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く