ELM
The Eukaryotic Linear Motif resource for
Functional Sites in Proteins

TRG_ER_diArg_1

Accession:
Functional site class:
di Arginine retention/retrieving signal
Functional site description:
The di-Arg ER retrieval and retention motif is present on membrane proteins where it serves for ER localisation. A variety of membrane proteins (some multimeric) possess this di-Arg motif. Here the motif functions as a quality control mechanism for correct folding and protein complex assembly governing the ER exit. The functional motif needs to be exposed within a cytosolic region of the membrane protein and requires a distinct proximity to the transmembrane region. Heteromerization, as well as the interaction with 14-3-3 proteins or PDZ domain containing proteins can render some di-Arg retention signals inactive, whereas the interaction with Coat protein complex I (COPI) supports ER retrieval. Finally, some di-Arg based ER-retention signals may be negatively regulated by phosphorylation of nearby residues.
ELM Description:
The di-Arg motif is present on the cytosolic side of many transmembrane proteins and serves as an ER-retrieval and retention motif. It is defined by two arginine residues, either next to each other or spaced by a single unconserved (RR, RXR). Longer insertions have been reported such as RXXR but we chose not to extend the motif in ELM due to the limited literature (Boulaflous,2009, Uemura,2009). Either before or after the Arg pair, there is a hydrophobic residue or a third Arg (Michelsen,2005). This implies that the motif may have two binding orientations, though this is not yet known. A combinatorial screening approach for the RXR sequence revealed that negatively charged or small, non-polar residues surrounding the arginines negatively affect the motif activity, whereas three or more arginines provide a strong ER-retention efficiency (Zerangue,2001). It is likely that the motif must be linked to one or more transmembrane regions and the distance from the transmembrane region to the di-Arg motif may be important (Zhang,2008, Michelsen,2005). Any di-Arg motif matches in non-membrane proteins should be disregarded.
Pattern: ([LIVMFYWPR]R[^YFWDE]{0,1}R)|(R[^YFWDE]{0,1}R[LIVMFYWPR])
Pattern Probability: 0.0053693
Present in taxon: Eukaryota
Interaction Domain:
WD40 (PF00400) WD domain, G-beta repeat (Stochiometry: 1 : 1)
o See 27 Instances for TRG_ER_diArg_1
The trafficking of proteins between vesicular compartments and delivery of proteins to particular subcellular locations are tightly regulated and essential for instance to achieve correct assembly of multimeric proteins and correct post-translational modifications. Arginine-based sorting motifs are shown to be critical in the biosynthetic processing of numerous transmembrane proteins. Schutze,1994 first described a di-Arg ER-retention motif determined by two adjacent Arginines (RR) localized on one form of the invariant chain (Ii33, P04233) of the major histocompatibility complex (MHC) class II (Schutze,1994). The initial presumptions of a required proximity to the N terminus and specificity for type II membrane proteins have been superceded. The di-Arg motif is most commonly found on an N- or C-terminal cytosolic region but can be found at other cytosolic protrusions of polytopic membrane proteins (Michelsen,2005). In the context of studying assembly and trafficking of ATP sensitive K+ channels (K-ATP), Zerangue,1999 found another variant of the di-Arg motif within the K-ATP subunits Kir6.1 (Q15842), Kir6.2 (Q14654) and SUR1 (Q09428). Mutational analysis and chimeric fusion proteins revealed an RXR-based sequence retaining single K-ATP subunits and incorrectly assembled complexes in the ER, preventing surface expression.
The di-Arg motif is not only present in K-ATP channel subunits but also in subunits of additional heteromeric membrane proteins like GABA (Q9UBS5), Kainate (Q16478) and NMDA (Q05586) receptors. Here the di-Arg ER-localization motif functions as a quality control mechanism governing the ER exit. Single subunits of unassembled multimeric proteins with an exposed di-Arg motif, which is suggested to be recognized by generic eukaryotic trafficking machinery, are retained in the ER. Only properly folded and fully assembled protein complexes can leave the ER and reach the cell surface (Zerangue,1999, Taneja,2009). Therefore the di-Arg motif represents a checkpoint for both the coordination of sequential assembly of multimeric membrane proteins and the regulation of their delivery to the cell membrane defining the number of protein complexes at the cell surface (Scott,2001). Precise regulation mechanisms are still unknown, but a simple explanation for the regulation of di-Arg based ER-retention in terms of surface expression of multimeric proteins is an inhibition of the motif by steric masking during heteromerization. Furthermore, the interaction with additional proteins like coat protein complex I (COPI), 14-3-3 proteins as well as PDZ domain containing proteins may act as regulatory switches. For example, unassembled K-ATP subunits possessing an exposed RXR motif are shown to be recognized by the COPI machinery and retrieved to ER by COPI coated vesicles, defining the di-Arg motif as an ER retrieval and retention motif (Taneja,2009). By contrast, 14-3-3 proteins may be qualified to probe the assembly status of multimeric membrane proteins and are often required in order to negatively regulate the di-Arg motif. 14-3-3 proteins reduce COPI mediated retention, which is necessary for the forward transport of the assembled protein complexes (Yuan,2003, Taneja,2009, Heusser,2006). For some instances (ADAM22 (Q9P0K1) and GPR15 (P49685) the 14-3-3 binding sequence overlaps with the di-Arg ER-retention motif, again indicating a regulatory switch by steric masking controlled by basophilic kinases, since 14-3-3 proteins bind phosphopeptides. Additionally, the di-Arg motif present in an NR1 (Q05586) subunit can be masked by recruitment of PDZ domain containing proteins (Scott,2001). Finally, di-Arg based ER-retention is likely regulated by phosphorylation of nearby residues. Either phosphomimetic mutations or activation of PKC enhanced the surface delivery of NR1, suggesting an inhibitory effect on di-Arg based ER-retention (Scott,2001). The CFTR protein is an unusual case. Cryptic di-Arg motifs are thought to become active due to cystic fibrosis unfolding mutations such as at F508 (Chang,1999). The instance in ELM is annotated as a false positive as this di-Arg is not a normal cellular motif.
o 12 selected references:


o 12 GO-Terms:
Biological Process:
Retrograde (Golgi To Er) Transport (also annotated in these classes: LIG_deltaCOP1_diTrp_1 TRG_ER_diLys_1 TRG_ER_KDEL_1 )
Protein-Er Targeting (also annotated in these classes: TRG_ER_diLys_1 TRG_ER_FFAT_1 TRG_ER_FFAT_2 TRG_ER_KDEL_1 )
Protein-Er Retention (also annotated in these classes: TRG_ER_diLys_1 TRG_ER_KDEL_1 )
Protein Targeting (also annotated in these classes: TRG_ER_diLys_1 TRG_ER_KDEL_1 TRG_Golgi_diPhe_1 TRG_LysEnd_APsAcLL_1 TRG_LysEnd_APsAcLL_3 TRG_LysEnd_GGAAcLL_1 TRG_LysEnd_GGAAcLL_2 )
Cellular Compartment:
Er-Golgi Transport Vesicle Membrane (also annotated in these classes: TRG_ER_diLys_1 TRG_Golgi_diPhe_1 )
Cytosol (also annotated in these classes: CLV_C14_Caspase3-7 CLV_Separin_Fungi CLV_Separin_Metazoa DEG_APCC_DBOX_1 DEG_APCC_KENBOX_2 DEG_APCC_TPR_1 DEG_Cend_DCAF12_1 DEG_Cend_FEM1AC_1 DEG_Cend_FEM1B_2 DEG_Cend_KLHDC2_1 DEG_Cend_TRIM7_1 DEG_COP1_1 DEG_CRBN_cyclicCter_1 DEG_Kelch_actinfilin_1 DEG_Kelch_Keap1_1 DEG_Kelch_Keap1_2 DEG_Kelch_KLHL12_1 DEG_Kelch_KLHL3_1 DEG_MDM2_SWIB_1 DEG_Nend_Nbox_1 DEG_Nend_UBRbox_1 DEG_Nend_UBRbox_2 DEG_Nend_UBRbox_3 DEG_Nend_UBRbox_4 DEG_ODPH_VHL_1 DEG_SCF_FBW7_1 DEG_SCF_FBW7_2 DEG_SCF_FBXO31_1 DEG_SCF_SKP2-CKS1_1 DEG_SCF_TRCP1_1 DEG_SIAH_1 DOC_AGCK_PIF_1 DOC_AGCK_PIF_2 DOC_AGCK_PIF_3 DOC_ANK_TNKS_1 DOC_CDC14_PxL_1 DOC_CKS1_1 DOC_CYCLIN_D_Helix_1 DOC_CYCLIN_RevRxL_6 DOC_CYCLIN_RxL_1 DOC_CYCLIN_yClb1_LxF_4 DOC_CYCLIN_yClb3_PxF_3 DOC_CYCLIN_yCln2_LP_2 DOC_GSK3_Axin_1 DOC_MAPK_DCC_7 DOC_MAPK_FxFP_2 DOC_MAPK_gen_1 DOC_MAPK_GRA24_9 DOC_MAPK_HePTP_8 DOC_MAPK_JIP1_4 DOC_MAPK_MEF2A_6 DOC_MAPK_NFAT4_5 DOC_MAPK_RevD_3 DOC_MIT_MIM_1 DOC_PP1_MyPhoNE_1 DOC_PP1_RVXF_1 DOC_PP1_SILK_1 DOC_PP2A_B56_1 DOC_PP2A_KARD_1 DOC_PP2B_LxvP_1 DOC_PP2B_PxIxIT_1 DOC_PUB_PIM_1 DOC_RSK_DDVF_1 DOC_SPAK_OSR1_1 DOC_TBK1_STING_1 DOC_WD40_RPTOR_TOS_1 DOC_WW_Pin1_4 LIG_14-3-3_CanoR_1 LIG_14-3-3_ChREBP_3 LIG_14-3-3_CterR_2 LIG_ActinCP_CPI_1 LIG_ActinCP_TwfCPI_2 LIG_Actin_RPEL_3 LIG_Actin_WH2_1 LIG_Actin_WH2_2 LIG_ANK_PxLPxL_1 LIG_AP2alpha_1 LIG_AP2alpha_2 LIG_APCC_ABBA_1 LIG_APCC_Cbox_1 LIG_APCC_Cbox_2 LIG_AP_GAE_1 LIG_Arc_Nlobe_1 LIG_ARL_BART_1 LIG_BH_BH3_1 LIG_BIR_II_1 LIG_BIR_III_1 LIG_BIR_III_2 LIG_BIR_III_3 LIG_BIR_III_4 LIG_CaM_1-14-15-16_REV_1 LIG_CaM_1-26_7 LIG_CaM_1-5-10-14_3 LIG_CaM_1-8-14_4 LIG_CaM_1-8-9-10_5 LIG_CaM_1-8_REV_2 LIG_CaM_IQ_9 LIG_CaMK_CASK_1 LIG_CaM_NSCaTE_8 LIG_CAP-Gly_1 LIG_CAP-Gly_2 LIG_Clathr_ClatBox_1 LIG_Clathr_ClatBox_2 LIG_CNOT1_NIM_1 LIG_CSK_EPIYA_1 LIG_CtBP_PxDLS_1 LIG_deltaCOP1_diTrp_1 LIG_DLG_GKlike_1 LIG_Dynein_DLC8_1 LIG_EABR_CEP55_1 LIG_EF_ALG2_ABM_1 LIG_EF_ALG2_ABM_2 LIG_EH_1 LIG_eIF4E_1 LIG_eIF4E_2 LIG_EVH1_1 LIG_EVH1_2 LIG_EVH1_3 LIG_FAT_LD_1 LIG_FERM_MyoX_1 LIG_FZD_DVL_PDZ LIG_G3BP_FGDF_1 LIG_GBD_Chelix_1 LIG_GBD_WASP_1 LIG_GSK3_LRP6_1 LIG_GYF LIG_IBAR_NPY_1 LIG_IRF7_LxLS_2 LIG_IRFs_LxIS_1 LIG_KLC1_WD_1 LIG_KLC1_Yacidic_2 LIG_LIR_Apic_2 LIG_LIR_Gen_1 LIG_LIR_LC3C_4 LIG_LIR_Nem_3 LIG_LYPXL_L_2 LIG_LYPXL_S_1 LIG_LYPXL_yS_3 LIG_MYND_3 LIG_OCRL_FandH_1 LIG_PAM2_1 LIG_PAM2_2 LIG_PDZ_Class_1 LIG_PDZ_Class_2 LIG_PDZ_Class_3 LIG_PDZ_Wminus1_1 LIG_Pex14_1 LIG_Pex14_2 LIG_Pex14_3 LIG_Pex14_4 LIG_Pex3_1 LIG_PIP2_ANTH_1 LIG_PIP2_ENTH_1 LIG_PROFILIN_1 LIG_PTAP_UEV_1 LIG_PTB_Apo_2 LIG_PTB_Phospho_1 LIG_SH2_CRK LIG_SH2_GRB2like LIG_SH2_NCK_1 LIG_SH2_PTP2 LIG_SH2_SFK_2 LIG_SH2_SFK_CTail_3 LIG_SH2_STAT3 LIG_SH2_STAT5 LIG_SH2_STAT6 LIG_SH3_1 LIG_SH3_2 LIG_SH3_3 LIG_SH3_4 LIG_SH3_CIN85_PxpxPR_1 LIG_SH3_PxRPPK_7 LIG_SH3_PxxDY_5 LIG_SH3_PxxPPRxxK_8 LIG_SH3_PxxxRxxKP_6 LIG_SPRY_1 LIG_SUFU_1 LIG_SxIP_EBH_1 LIG_TPR LIG_TRAF2like_MATH_loPxQ_2 LIG_TRAF2like_MATH_shPxQ_1 LIG_TRAF3_MATH_PxP_3 LIG_TRAF4_MATH_1 LIG_TRAF6_MATH_1 LIG_TYR_ITAM LIG_TYR_ITIM LIG_TYR_ITSM LIG_UFM1_UFIM_1 LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 LIG_VCP_VIM_2 LIG_Vh1_VBS_1 LIG_WH1 LIG_WRC_WIRS_1 LIG_WW_1 LIG_WW_2 LIG_WW_3 MOD_AAK1BIKe_LxxQxTG_1 MOD_CAAXbox MOD_CDC14_SPxK_1 MOD_CDK_SPK_2 MOD_CDK_SPxK_1 MOD_CDK_SPxxK_3 MOD_CK1_1 MOD_CK2_1 MOD_DYRK1A_RPxSP_1 MOD_GSK3_1 MOD_LATS_1 MOD_LOK_YxT_1 MOD_NEK2_1 MOD_NEK2_2 MOD_NMyristoyl MOD_PIKK_1 MOD_PK_1 MOD_PKA_1 MOD_PKA_2 MOD_PKB_1 MOD_PLK MOD_Plk_1 MOD_Plk_2-3 MOD_Plk_4 MOD_PRMT_GGRGG_1 MOD_ProDKin_1 MOD_SPalmitoyl_2 MOD_SPalmitoyl_4 MOD_TYR_CSK MOD_TYR_DYR ELM:old_LIG_14-3-3_1 ELM:old_LIG_14-3-3_2 ELM:old_LIG_14-3-3_3 TRG_AP2beta_CARGO_1 TRG_Cilium_Arf4_1 TRG_Cilium_RVxP_2 TRG_DiLeu_BaEn_1 TRG_DiLeu_BaEn_2 TRG_DiLeu_BaEn_3 TRG_DiLeu_BaEn_4 TRG_DiLeu_BaLyEn_6 TRG_DiLeu_LyEn_5 TRG_ENDOCYTIC_2 TRG_ER_diLys_1 TRG_ER_FFAT_1 TRG_ER_FFAT_2 TRG_Golgi_diPhe_1 TRG_LysEnd_APsAcLL_1 TRG_LysEnd_APsAcLL_3 TRG_LysEnd_GGAAcLL_1 TRG_LysEnd_GGAAcLL_2 TRG_NES_CRM1_1 TRG_NESrev_CRM1_2 TRG_PTS1 TRG_PTS2 )
Rough Endoplasmic Reticulum (also annotated in these classes: TRG_ER_diLys_1 TRG_ER_KDEL_1 )
Endoplasmic Reticulum Cisterna (also annotated in these classes: TRG_ER_diLys_1 TRG_ER_KDEL_1 )
Endoplasmic Reticulum Membrane (also annotated in these classes: LIG_BH_BH3_1 LIG_deltaCOP1_diTrp_1 TRG_ER_diLys_1 )
Golgi-Er Transport Vesicle Membrane (also annotated in these classes: TRG_ER_diLys_1 )
Endoplasmic Reticulum Membrane, Integral Protein (also annotated in these classes: TRG_ER_diLys_1 TRG_Golgi_diPhe_1 )
Molecular Function:
Molecular Function Unknown (also annotated in class: )


o 27 Instances for TRG_ER_diArg_1
(click table headers for sorting; Notes column: =Number of Switches, =Number of Interactions)
Acc., Gene-, NameStartEndSubsequenceLogic#Ev.OrganismNotes
Q05586-4 GRIN1
NMDZ1_HUMAN
893 895 STLASSFKRRRSSKDTQYHP TP 2 Homo sapiens (Human)
3
Q01559 HMGR
HMDH_NICSY
3 6 MDVRRRSEKPAYPTKEFAAG TP 1 Nicotiana sylvestris (Wood tobacco)
Q63633 Slc12a5
S12A5_RAT
1101 1104 VLLNMPGPPRNRNGDENYME TP 2 Rattus norvegicus (Norway rat)
O88829 St3gal5
SIAT9_MOUSE
11 13 TEAVGGAARRPQKLRSQAAA TP 5 Mus musculus (House mouse)
P13569 CFTR
CFTR_HUMAN
553 556 GITLSGGQRARISLARAVYK FP 3 Homo sapiens (Human)
Q99572 P2RX7
P2RX7_HUMAN
575 578 AILPSCCRWRIRKEFPKSEG TP 2 Homo sapiens (Human)
C8ZIX9 EC1118_1P2_2553g
C8ZIX9_YEAS8
8 11 MSLSLVSYRLRKNPWVNIFL TP 4 Saccharomyces cerevisiae EC1118
Q01726 MC1R
MSHR_HUMAN
160 163 YHSIVTLPRARRAVAAIWVA TP 4 Homo sapiens (Human)
P35610 SOAT1
SOAT1_HUMAN
10 13 VGEEKMSLRNRLSKSRENPE TP 3 Homo sapiens (Human)
Q9Y5M8 SRPRB
SRPRB_HUMAN
7 9 MASADSRRVADGGGAGGTFQ TP 3 Homo sapiens (Human)
Q99720 SIGMAR1
SGMR1_HUMAN
7 9 MQWAVGRRWAWAALLLAVAA TP 3 Homo sapiens (Human)
P26678 PLN
PPLA_HUMAN
12 14 VQYLTRSAIRRASTIEMPQQ TP 5 Homo sapiens (Human)
O14672 ADAM10
ADA10_HUMAN
723 725 PLPGTLKRRRPPQPIQQPQR TP 4 Homo sapiens (Human)
O43292 GPAA1
GPAA1_HUMAN
9 11 MGLLSDPVRRRALARLVLRL TN 3 Homo sapiens (Human)
Q16478 GRIK5
GRIK5_HUMAN
862 865 SCRKTSRSRRRRRPGGPSRA TP 5 Homo sapiens (Human)
P30518 AVPR2
V2R_HUMAN
247 249 GPSERPGGRRRGRRTGSPGE TP 3 Homo sapiens (Human)
Q9UBS5 GABBR1
GABR1_HUMAN
923 926 QLQSRQQLRSRRHPPTPPEP TP 3 Homo sapiens (Human)
1
Q96RI0 F2RL3
PAR4_HUMAN
182 185 RYLALVHPLRARALRGRRLA TP 4 Homo sapiens (Human)
P04233 CD74
HG2A_HUMAN
3 5 MHRRRSRSCREDQKPVMDDQ TP 4 Homo sapiens (Human)
1
P49685 GPR15
GPR15_HUMAN
352 354 LSTFIHAEDFARRRKRSVSL TP 6 Homo sapiens (Human)
1
Q9P0K1 ADAM22
ADA22_HUMAN
851 854 KKKIRGKRFRPRSNSTETLS TP 4 Homo sapiens (Human)
1
Q58F09 GCS1
Q58F09_HUMAN
7 9 MARGERRRRAVPAEGVRTAE TP 2 Homo sapiens (Human)
Q62968 Scn10a
SCNAA_RAT
495 497 SFLGLSSGRRRASHGSVFHF TP 4 Rattus norvegicus (Norway rat)
Q14654 KCNJ11
IRK11_HUMAN
368 371 TLASARGPLRKRSVPMAKAK TP 9 Homo sapiens (Human)
Q15842 KCNJ8
IRK8_HUMAN
380 383 SELSHQNSLRKRNSMRRNNS TP 5 Homo sapiens (Human)
Q09428 ABCC8
ABCC8_HUMAN
648 651 AVPLRVVNRKRPAREDCRGL TP 5 Homo sapiens (Human)
Q05586 GRIN1
NMDZ1_HUMAN
893 895 STLASSFKRRRSSKDTSTGG TP 5 Homo sapiens (Human)
1
Please cite: ELM-the Eukaryotic Linear Motif resource-2024 update. (PMID:37962385)

ELM data can be downloaded & distributed for non-commercial use according to the ELM Software License Agreement

AltStyle によって変換されたページ (->オリジナル) /