ELM
The Eukaryotic Linear Motif resource for
Functional Sites in Proteins

LIG_Pex3_1

Accession:
Functional site class:
Pex3-binding site
Functional site description:
Cytosolic import receptor Peroxin(Pex)19 (P40855) binds to the peroxisomal membrane proteins (PMPs) with its C-terminus. These PMPs are synthesized on free polyribosomes and are post-translationally inserted into peroxisomal membrane. The LxxLLxxxLxxF short linear motif at N-terminus of Pex19 interacts with N-terminal half of Pex3 at cytosolic side of peroxisomal membrane to import PMPs into the membrane. Pex3 (P56589) is a docking factor that is anchored to the peroxisomal membrane via its N-terminal 33 amino acid residues that are inserted into the membrane of peroxisome. This interaction is followed by release of PMPs into peroxisomal membrane and recycling of Pex19 into the cytosol for another round of PMPs import. Peroxisomes that lack either Pex3 or Pex19 lack detectable peroxisomal structures and mislocalise their PMPs to the cytosol where they are rapidly degraded.
ELMs with same tags:
ELM Description:
The disordered N-terminal region of Pex19 undergoes a disorder to order transition upon binding to N-terminal half of Pex3 (PF04882) and acquires an amphipathic alpha helical conformation. Human Pex19 contains a LxxLLxxxLxxF short linear motif consisting of leucine triad (LEU18, LEU21, LEU22) and phenylalanine at position 29 that are crucial for Pex3 binding (Sato,2010). Replacement of any leucines or phenylalanine significantly diminishes the binding activity of Pex19 to Pex3 (Sato,2010, Schmidt,2010). The docking surface of Pex3 for Pex19 (3AJB, Sato,2010) is a large tapered cavity that is complementary to the Pex19 alpha helical structure. The cavity is partially divided by TRP104 which protrudes from the cavity dividing it into wider surface area near the surface and narrower area deeper inside. Wider surface portion is occupied by the leucine triad and the narrower area is occupied by PHE29 (Sato,2010). TRP104 of Pex3 is a crucial residue for binding to Pex19. It interacts with following residues in Pex19: LEU22, ALA25, LEU26, and PHE29 (Sato,2008). Pex3 adopts a fold composed of 10 alpha helices and one short 3(10) helix. Long alpha3 helix of Pex3 forms the core of the crystal structure (3MK4, Schmidt,2010) with remaining 9 alpha helices and one 3(10) helix arranged circularly around it in five segments. This structure can be described as a large helical bundle. Pex19 alpha helix binds into the groove in Pex3 at the top of the helical bundle. One side of the groove consists of alpha2 and alpha3 helices whereas the other side is formed by the loop that connects helices alpha4 and alpha5, and by a portion of helix alpha8 (Schmidt,2010).
Pattern: L..LL...L..F
Pattern Probability: 5.240e-07
Present in taxon: Eukaryota
Interaction Domain:
Peroxin-3 (PF04882) Peroxin-3 (Stochiometry: 1 : 1)
o See 1 Instance for LIG_Pex3_1
Peroxisomes are single-membrane spherical subcellular organelles found in eukaryotes. Peroxisomes belong to microbody family along with glyoxysomes found in plants and glycosomes found in trypanosomes. The peroxisomal matrix contains enzymes involved in hydrogen peroxide metabolism, alpha and beta oxidation of long chain fatty acids, branched chain fatty acids, D-amino acids, and polyamines. Peroxisomes also synthesise cholesterol, bile acids, and ether lipids (plasmalogens) in mammals (Lanyon-Hogg,2010; Ma,2011).
Studies on peroxisome formation yielded conflicting results with two models of peroxisome formation (biogenesis) proposed. The early model of growth and division states that peroxisomes are autonomous organelles where peroxisomal membrane and matrix proteins are synthesized on free ribosomes and are post-translationally targeted from the cytoplasm to peroxisomes. Evidence for this model came from Reguenga,2001 where peroxisomal enzymes that are synthesised on free polyribosomes were imported post-translationally into peroxisome. Further evidence came from studies of PTS1 (TRG_PTS1) and PTS2 (TRG_PTS2) import signals that are present in peroxisomal matrix enzyme proteins. The second model is a recently proposed model of de novo biogenesis. First evidence for this model came from electron microscopy studies where peroxisomes are in close proximity to endoplasmic reticulum (Novikoff,1972). Further evidence came from reintroduction of corresponding wild-type gene in Pex3, Pex16, or Pex19 mutants that completely lack peroxisomal membrane structures regain peroxisomes after gene reintroduction. Pex3, Pex16, and Pex19 are three peroxins involved in peroxisome membrane biogenesis and absence of either one of these results in termination of peroxisomal biogenesis. Reintroduction of Pex3 gene into Pex3 deficient cells resulted in insertion of Pex3 into endoplasmic reticulum and subsequent release of vesicles from endoplasmic reticulum (ER) that later matured into peroxisomes by fusion of pre-peroxisomal vesicles that bud off from ER. Integral membrane Pex proteins were shown to enter ER with subsequent detachment of ER membrane and formation of pre-peroxisomal compartment (Tabak,2003). ER involvement in peroxisome formation has been shown but many questions still remain unanswered. It is unclear whether de novo biogenesis operates continuously or only switches on when cells lack peroxisomes (Ma,2009). In S. cerevisiae, ER-derived vesicles mature into peroxisomes only in cells lacking peroxisomes (Motley,2007) whereas in human fibroblasts both types of peroxisomal biogenesis occur simultaneously (Kim,2006).
Endoplasmic reticulum to peroxisome pathway can be divided into four steps: PMP targeting to endoplasmic reticulum, segregation of PMPs from secretory and endoplasmic reticulum proteins, incorporation of PMPs from endoplasmic reticulum into vesicles, fusion of endoplasmic-derived pre-peroxisomal vesicles with either pre-existing peroxisomes (growth and division model) or with other ER-derived pre-peroxisomal vesicles (de novo biogenesis model) followed by maturation of these pre-peroxisomal vesicles into mature peroxisomes.
Pex19 functions as an import receptor for newly synthesized class I PMPs. Class I PMPs contain peroxisomal membrane targeting sequence (mPTS). mPTS contains a Pex19-binding sequence and a sequence for PMP integration into the peroxisomal membrane. N-terminal domain of Pex19 contains Pex3-binding motif, LxxLLxxxLxxF that is responsible for docking to Pex3 whereas C-terminal half of Pex19 is required for binding to class I PMPs in the cytosol. Pex19 is also believed to function as a PMP-specific chaperone that binds and stabilizes PMPs by the formation of a soluble complex preventing aggregation of PMPs. The vast majority of Pex19 is cytosolic with 10% of Pex19 located in peroxisome. Pex19 proteins from multiple species including human, Chinese hamster, and S. cerevisiae are farnesylated at a conserved C-terminal CaaX motif (James,1994, Kammerer,1997, Gotte,1998). This post-translational modification is not necessary for Pex19 function since the deletion of the entire CaaX sequence in S. cerevisiae Pex19 did not prevent it from complementing the Pex19 deficient cells (Snyder,1999). The purpose of farnesylation of Pex19 is to increases its affinity to PMPs such as Pex10 and Pex13. Upon binding to Pex3, Pex19 forms tertiary complexes with integral membrane proteins, Pex16 and Pex26 (Matsuzono,2006).
Pex3 and Pex19 are also required budding off of pre-peroxisomal vesicles from endoplasmic reticulum. Pex3 is located in the endoplasmic reticulum where it concentrates in foci that then bud off in a Pex19-dependent manner and forms pre-peroxisomal vesicle. Pre-peroxisomal vesicles fuse with each other to form larger structures. PMPs including import machinery for peroxisomal matrix proteins are delivered to peroxisomal membrane by Pex19 and incorporated into the membrane by the interaction of LxxLLxxxLxxF motif of Pex19 with Pex3 followed by the import of matrix proteins that marks the completion of the peroxisome maturation process. Without Pex19, Pex3 is trapped in the endoplasmic reticulum and no pre-peroxisomal vesicle is formed. Lack of Pex3 results in Pex19 inability to dock to endoplasmic reticulum and bring PMPs to the membrane. Cells that contain peroxisomes recruit their membrane directly from the endoplasmic reticulum and in cells lacking peroxisomes, peroxisomes can be restored by de novo biogenesis (Hoepfner,2005).
There are two classes of PMPs, class I and class II. Class I PMPs are diverse group of proteins that include metabolite transporters such as PMP22, PMP32, and PMP70, peroxins involved in peroxisome division such as Pex11, peroxins involved in peroxisomal matrix protein import such as Pex2, Pex13, and Pex26, and one peroxin involved in peroxisome membrane synthesis, Pex16. This class of PMP import is dependent on Pex19 and Pex3 proteins for their import into peroxisomal membrane. Class II PMP import is independent of Pex19 and Pex3 and includes Pex3, Pex4, and Pex22 as a cargo (Schmidt,2012).
o 10 selected references:


o 11 GO-Terms:
Biological Process:
Peroxisomal Membrane Transport (also annotated in these classes: LIG_Pex14_2 )
Protein-Peroxisome Targeting (also annotated in these classes: LIG_Pex14_1 LIG_Pex14_2 LIG_Pex14_3 LIG_Pex14_4 TRG_PTS1 TRG_PTS2 )
Protein Import Into Peroxisome Membrane (also annotated in these classes: LIG_Pex14_3 LIG_Pex14_4 )
Cellular Compartment:
Peroxisome Membrane, Peroxisomal Membrane (also annotated in class: )
Peroxisome (also annotated in these classes: LIG_Pex14_1 LIG_Pex14_2 LIG_Pex14_3 LIG_Pex14_4 TRG_PTS1 TRG_PTS2 )
Glycosome (also annotated in these classes: LIG_Pex14_1 LIG_Pex14_2 )
Glycosome Membrane, Glycosomal Membrane (also annotated in class: )
Cytosol (also annotated in these classes: CLV_C14_Caspase3-7 CLV_Separin_Fungi CLV_Separin_Metazoa DEG_APCC_DBOX_1 DEG_APCC_KENBOX_2 DEG_APCC_TPR_1 DEG_Cend_DCAF12_1 DEG_Cend_FEM1AC_1 DEG_Cend_FEM1B_2 DEG_Cend_KLHDC2_1 DEG_Cend_TRIM7_1 DEG_COP1_1 DEG_CRBN_cyclicCter_1 DEG_Kelch_actinfilin_1 DEG_Kelch_Keap1_1 DEG_Kelch_Keap1_2 DEG_Kelch_KLHL12_1 DEG_Kelch_KLHL3_1 DEG_MDM2_SWIB_1 DEG_Nend_Nbox_1 DEG_Nend_UBRbox_1 DEG_Nend_UBRbox_2 DEG_Nend_UBRbox_3 DEG_Nend_UBRbox_4 DEG_ODPH_VHL_1 DEG_SCF_FBW7_1 DEG_SCF_FBW7_2 DEG_SCF_FBXO31_1 DEG_SCF_SKP2-CKS1_1 DEG_SCF_TRCP1_1 DEG_SIAH_1 DOC_AGCK_PIF_1 DOC_AGCK_PIF_2 DOC_AGCK_PIF_3 DOC_ANK_TNKS_1 DOC_CDC14_PxL_1 DOC_CKS1_1 DOC_CYCLIN_D_Helix_1 DOC_CYCLIN_RevRxL_6 DOC_CYCLIN_RxL_1 DOC_CYCLIN_yClb1_LxF_4 DOC_CYCLIN_yClb3_PxF_3 DOC_CYCLIN_yCln2_LP_2 DOC_GSK3_Axin_1 DOC_MAPK_DCC_7 DOC_MAPK_FxFP_2 DOC_MAPK_gen_1 DOC_MAPK_GRA24_9 DOC_MAPK_HePTP_8 DOC_MAPK_JIP1_4 DOC_MAPK_MEF2A_6 DOC_MAPK_NFAT4_5 DOC_MAPK_RevD_3 DOC_MIT_MIM_1 DOC_PP1_MyPhoNE_1 DOC_PP1_RVXF_1 DOC_PP1_SILK_1 DOC_PP2A_B56_1 DOC_PP2A_KARD_1 DOC_PP2B_LxvP_1 DOC_PP2B_PxIxIT_1 DOC_PUB_PIM_1 DOC_RSK_DDVF_1 DOC_SPAK_OSR1_1 DOC_TBK1_STING_1 DOC_WD40_RPTOR_TOS_1 DOC_WW_Pin1_4 LIG_14-3-3_CanoR_1 LIG_14-3-3_ChREBP_3 LIG_14-3-3_CterR_2 LIG_ActinCP_CPI_1 LIG_ActinCP_TwfCPI_2 LIG_Actin_RPEL_3 LIG_Actin_WH2_1 LIG_Actin_WH2_2 LIG_ANK_PxLPxL_1 LIG_AP2alpha_1 LIG_AP2alpha_2 LIG_APCC_ABBA_1 LIG_APCC_Cbox_1 LIG_APCC_Cbox_2 LIG_AP_GAE_1 LIG_Arc_Nlobe_1 LIG_ARL_BART_1 LIG_BH_BH3_1 LIG_BIR_II_1 LIG_BIR_III_1 LIG_BIR_III_2 LIG_BIR_III_3 LIG_BIR_III_4 LIG_CaM_1-14-15-16_REV_1 LIG_CaM_1-26_7 LIG_CaM_1-5-10-14_3 LIG_CaM_1-8-14_4 LIG_CaM_1-8-9-10_5 LIG_CaM_1-8_REV_2 LIG_CaM_IQ_9 LIG_CaMK_CASK_1 LIG_CaM_NSCaTE_8 LIG_CAP-Gly_1 LIG_CAP-Gly_2 LIG_Clathr_ClatBox_1 LIG_Clathr_ClatBox_2 LIG_CNOT1_NIM_1 LIG_CSK_EPIYA_1 LIG_CtBP_PxDLS_1 LIG_deltaCOP1_diTrp_1 LIG_DLG_GKlike_1 LIG_Dynein_DLC8_1 LIG_EABR_CEP55_1 LIG_EF_ALG2_ABM_1 LIG_EF_ALG2_ABM_2 LIG_EH_1 LIG_eIF4E_1 LIG_eIF4E_2 LIG_EVH1_1 LIG_EVH1_2 LIG_EVH1_3 LIG_FAT_LD_1 LIG_FERM_MyoX_1 LIG_FZD_DVL_PDZ LIG_G3BP_FGDF_1 LIG_GBD_Chelix_1 LIG_GBD_WASP_1 LIG_GSK3_LRP6_1 LIG_GYF LIG_IBAR_NPY_1 LIG_IRF7_LxLS_2 LIG_IRFs_LxIS_1 LIG_KLC1_WD_1 LIG_KLC1_Yacidic_2 LIG_LIR_Apic_2 LIG_LIR_Gen_1 LIG_LIR_LC3C_4 LIG_LIR_Nem_3 LIG_LYPXL_L_2 LIG_LYPXL_S_1 LIG_LYPXL_yS_3 LIG_MYND_3 LIG_OCRL_FandH_1 LIG_PAM2_1 LIG_PAM2_2 LIG_PDZ_Class_1 LIG_PDZ_Class_2 LIG_PDZ_Class_3 LIG_PDZ_Wminus1_1 LIG_Pex14_1 LIG_Pex14_2 LIG_Pex14_3 LIG_Pex14_4 LIG_PIP2_ANTH_1 LIG_PIP2_ENTH_1 LIG_PROFILIN_1 LIG_PTAP_UEV_1 LIG_PTB_Apo_2 LIG_PTB_Phospho_1 LIG_SH2_CRK LIG_SH2_GRB2like LIG_SH2_NCK_1 LIG_SH2_PTP2 LIG_SH2_SFK_2 LIG_SH2_SFK_CTail_3 LIG_SH2_STAT3 LIG_SH2_STAT5 LIG_SH2_STAT6 LIG_SH3_1 LIG_SH3_2 LIG_SH3_3 LIG_SH3_4 LIG_SH3_CIN85_PxpxPR_1 LIG_SH3_PxRPPK_7 LIG_SH3_PxxDY_5 LIG_SH3_PxxPPRxxK_8 LIG_SH3_PxxxRxxKP_6 LIG_SPRY_1 LIG_SUFU_1 LIG_SxIP_EBH_1 LIG_TPR LIG_TRAF2like_MATH_loPxQ_2 LIG_TRAF2like_MATH_shPxQ_1 LIG_TRAF3_MATH_PxP_3 LIG_TRAF4_MATH_1 LIG_TRAF6_MATH_1 LIG_TYR_ITAM LIG_TYR_ITIM LIG_TYR_ITSM LIG_UFM1_UFIM_1 LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 LIG_VCP_VIM_2 LIG_Vh1_VBS_1 LIG_WH1 LIG_WRC_WIRS_1 LIG_WW_1 LIG_WW_2 LIG_WW_3 MOD_AAK1BIKe_LxxQxTG_1 MOD_CAAXbox MOD_CDC14_SPxK_1 MOD_CDK_SPK_2 MOD_CDK_SPxK_1 MOD_CDK_SPxxK_3 MOD_CK1_1 MOD_CK2_1 MOD_DYRK1A_RPxSP_1 MOD_GSK3_1 MOD_LATS_1 MOD_LOK_YxT_1 MOD_NEK2_1 MOD_NEK2_2 MOD_NMyristoyl MOD_PIKK_1 MOD_PK_1 MOD_PKA_1 MOD_PKA_2 MOD_PKB_1 MOD_PLK MOD_Plk_1 MOD_Plk_2-3 MOD_Plk_4 MOD_PRMT_GGRGG_1 MOD_ProDKin_1 MOD_SPalmitoyl_2 MOD_SPalmitoyl_4 MOD_TYR_CSK MOD_TYR_DYR ELM:old_LIG_14-3-3_1 ELM:old_LIG_14-3-3_2 ELM:old_LIG_14-3-3_3 TRG_AP2beta_CARGO_1 TRG_Cilium_Arf4_1 TRG_Cilium_RVxP_2 TRG_DiLeu_BaEn_1 TRG_DiLeu_BaEn_2 TRG_DiLeu_BaEn_3 TRG_DiLeu_BaEn_4 TRG_DiLeu_BaLyEn_6 TRG_DiLeu_LyEn_5 TRG_ENDOCYTIC_2 TRG_ER_diArg_1 TRG_ER_diLys_1 TRG_ER_FFAT_1 TRG_ER_FFAT_2 TRG_Golgi_diPhe_1 TRG_LysEnd_APsAcLL_1 TRG_LysEnd_APsAcLL_3 TRG_LysEnd_GGAAcLL_1 TRG_LysEnd_GGAAcLL_2 TRG_NES_CRM1_1 TRG_NESrev_CRM1_2 TRG_PTS1 TRG_PTS2 )
Molecular Function:
Peroxisome Membrane Targeting Sequence Binding (also annotated in these classes: LIG_Pex14_2 )
Protein Binding (also annotated in these classes: CLV_C14_Caspase3-7 CLV_Separin_Fungi CLV_Separin_Metazoa DEG_APCC_TPR_1 DEG_Cend_DCAF12_1 DEG_Cend_FEM1AC_1 DEG_Cend_FEM1B_2 DEG_Cend_KLHDC2_1 DEG_Cend_TRIM7_1 DEG_COP1 DEG_COP1_1 DEG_CRBN_cyclicCter_1 DEG_CRL4_CDT2_1 DEG_CRL4_CDT2_2 DEG_ODPH_VHL_1 DEG_SCF_COI1_1 DEG_SCF_FBW7_1 DEG_SCF_FBW7_2 DEG_SCF_FBXO31_1 DEG_SCF_SKP2-CKS1_1 DEG_SCF_TIR1_1 DEG_SCF_TRCP1_1 DEG_SIAH_1 DOC_AGCK_PIF_1 DOC_AGCK_PIF_2 DOC_AGCK_PIF_3 DOC_ANK_TNKS_1 DOC_CKS1_1 DOC_MAPK_DCC_7 DOC_MAPK_GRA24_9 DOC_MAPK_HePTP_8 DOC_MAPK_JIP1_4 DOC_MAPK_MEF2A_6 DOC_MAPK_NFAT4_5 DOC_PIKK_1 DOC_PP1_MyPhoNE_1 DOC_PP1_RVXF_1 DOC_PP1_SILK_1 DOC_PP2A_B56_1 DOC_PP2A_KARD_1 DOC_PP2B_LxvP_1 DOC_RSK_DDVF_1 DOC_SPAK_OSR1_1 DOC_WD40_RPTOR_TOS_1 LIG_14-3-3_ChREBP_3 LIG_ActinCP_CPI_1 LIG_ActinCP_TwfCPI_2 LIG_ANK_PxLPxL_1 LIG_AP2alpha_1 LIG_AP2alpha_2 LIG_APCC_Cbox_1 LIG_APCC_Cbox_2 LIG_AP_GAE_1 LIG_ARL_BART_1 LIG_ARS2_EDGEI_1 LIG_BH_BH3_1 LIG_BIR_II_1 LIG_BIR_III_1 LIG_BIR_III_2 LIG_BIR_III_3 LIG_BIR_III_4 LIG_CaM_IQ_9 LIG_CaMK_CASK_1 LIG_CNOT1_NIM_1 LIG_deltaCOP1_diTrp_1 LIG_DLG_GKlike_1 LIG_Dynein_DLC8_1 LIG_EABR_CEP55_1 LIG_EF_ALG2_ABM_1 LIG_EF_ALG2_ABM_2 LIG_EH_1 LIG_eIF4E_1 LIG_eIF4E_2 LIG_EVH1_1 LIG_EVH1_2 LIG_FAT_LD_1 LIG_FHA_1 LIG_FHA_2 LIG_FXI_DFP_1 LIG_GLEBS_BUB3_1 LIG_HCF-1_HBM_1 LIG_IBAR_NPY_1 LIG_Integrin_isoDGR_2 LIG_IRF7_LxLS_2 LIG_IRFs_LxIS_1 LIG_KLC1_Yacidic_2 LIG_LEDGF_IBM_1 LIG_LIR_Apic_2 LIG_LIR_Gen_1 LIG_LIR_LC3C_4 LIG_LIR_Nem_3 LIG_LRP6_Inhibitor_1 LIG_LSD1_SNAG_1 LIG_LYPXL_L_2 LIG_LYPXL_S_1 LIG_LYPXL_SIV_4 LIG_LYPXL_yS_3 LIG_MAD2 LIG_Menin_MBM1_1 LIG_MLH1_MIPbox_1 LIG_MSH2_SHIPbox_1 LIG_MTR4_AIM_1 LIG_Mtr4_Air2_1 LIG_Mtr4_Trf4_1 LIG_Mtr4_Trf4_2 LIG_MYND_3 LIG_Nrd1CID_NIM_1 LIG_NRP_CendR_1 LIG_OCRL_FandH_1 LIG_PALB2_WD40_1 LIG_PDZ_Class_1 LIG_PDZ_Class_2 LIG_PDZ_Class_3 LIG_PDZ_Wminus1_1 LIG_Pex14_1 LIG_Pex14_2 LIG_PTB_Apo_2 LIG_PTB_Phospho_1 LIG_RBL1_LxSxE_2 LIG_RB_pABgroove_1 LIG_REV1ctd_RIR_1 LIG_RPA_C_Plants LIG_RPA_C_Vert LIG_RuBisCO_WRxxL_1 LIG_SH2_CRK LIG_SH2_GRB2like LIG_SH2_NCK_1 LIG_SH2_SFK_2 LIG_SH2_SFK_CTail_3 LIG_SH2_STAP1 LIG_SH3_1 LIG_SH3_2 LIG_SH3_3 LIG_SH3_4 LIG_SH3_CIN85_PxpxPR_1 LIG_SH3_PxxDY_5 LIG_SPRY_1 LIG_SUFU_1 LIG_TRAF2like_MATH_loPxQ_2 LIG_TRAF2like_MATH_shPxQ_1 LIG_TRAF3_MATH_PxP_3 LIG_TRAF4_MATH_1 LIG_TRAF6_MATH_1 LIG_Trf4_IWRxY_1 LIG_UFM1_UFIM_1 LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 LIG_VCP_VIM_2 LIG_Vh1_VBS_1 LIG_WD40_WDR5_VDV_1 LIG_WD40_WDR5_VDV_2 LIG_WD40_WDR5_WIN_1 LIG_WD40_WDR5_WIN_2 LIG_WD40_WDR5_WIN_3 LIG_WH1 LIG_WRC_WIRS_1 LIG_WW_1 LIG_WW_2 LIG_WW_3 MOD_Plk_2-3 MOD_Plk_4 MOD_PRMT_GGRGG_1 TRG_AP2beta_CARGO_1 TRG_Cilium_Arf4_1 TRG_Cilium_RVxP_2 TRG_DiLeu_BaEn_1 TRG_DiLeu_BaEn_2 TRG_DiLeu_BaEn_3 TRG_DiLeu_BaEn_4 TRG_DiLeu_BaLyEn_6 TRG_DiLeu_LyEn_5 TRG_ER_diLys_1 TRG_ER_FFAT_1 TRG_ER_FFAT_2 TRG_Golgi_diPhe_1 TRG_LysEnd_APsAcLL_1 TRG_LysEnd_APsAcLL_3 TRG_LysEnd_GGAAcLL_1 TRG_LysEnd_GGAAcLL_2 TRG_NES_CRM1_1 TRG_NESrev_CRM1_2 TRG_NLS_Bipartite_1 TRG_NLS_MonoCore_2 TRG_NLS_MonoExtC_3 TRG_NLS_MonoExtN_4 )
Peroxisome Targeting Sequence Binding (also annotated in these classes: LIG_Pex14_1 LIG_Pex14_2 LIG_Pex14_3 LIG_Pex14_4 )


o 1 Instance for LIG_Pex3_1
(click table headers for sorting; Notes column: =Number of Switches, =Number of Interactions)
Acc., Gene-, NameStartEndSubsequenceLogic#Ev.OrganismNotes
P40855 PEX19
PEX19_HUMAN
18 29 ADRELEELLESALDDFDKAK TP 0 Homo sapiens (Human)
Please cite: ELM-the Eukaryotic Linear Motif resource-2024 update. (PMID:37962385)

ELM data can be downloaded & distributed for non-commercial use according to the ELM Software License Agreement

AltStyle によって変換されたページ (->オリジナル) /