ELM
The Eukaryotic Linear Motif resource for
Functional Sites in Proteins

LIG_VCP_VIM_2

Accession:
Functional site class:
VCP (P97, TERA) N-terminal domain binding motifs
Functional site description:
VCP (P97, TERA) is an essential and abundant AAA-ATPase that mediates vital cellular activities with the cooperation of many cofactors. VCP complexes are involved in many cellular processes, particularly in the endoplasmic reticulum (ER)‐associated degradation (ERAD) process for protein quality control, membrane trafficking, and DNA damage response. The N-terminal domain of VCP acts as a binding site for a group of adaptor proteins through their Arg/Lys-rich peptide motifs. Three motifs known to bind to the N-terminal domain of VCP are the SHP box, VIM (VCP-Interacting Motif), and VBM (VCP-Binding Motif) and they help direct VCP into different cellular pathways. The helical VIM and VBM motifs bind to the same groove but through different key residues. Though the VCP and their binding partners are conserved in eukaryotes, the sequences that mediate their interactions are significantly different across organisms showing that evolution has established more than one way for these proteins to interact.
ELMs with same func. site: LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 LIG_VCP_VIM_2
ELM Description:
Major VIM motif containing proteins include gp78, ANKZF1 and SVIP. The motif contains a short region containing two arginine-rich sequences separated by a hydrophobic stretch, including several conserved alanine residues (Hanzelmann,2011). The structure of gp78-VIM:VCP complex (3TIW) shows that the α-helix inserts itself into a hydrophobic pocket that is restricted at its base by a salt bridge formed between R144 and D35 connecting the Nn and Nc subdomains. The arginine residues at the positions R625, R626 and R636 are important for the interaction. The most prominent contacts are formed by the combination of electrostatic and hydrophobic interactions between the R625, V108 and I175 in VCP with the R636 and D35, A142 and R144 in VCP respectively. In addition to these hydrophobic contacts, the residues R625, R626, E634 and R636 form several main chain-side chain and side chain-side chain hydrogen bonds. A Glu at position 634, also present in many of the instances, makes substantial contacts with R53 of VCP. A substitution of Glu to Leu is observed in the case of UBXD1 that is also characterized by the lack of first conserved arginine residues yet binds VCP with low affinity. Though ANKZF1 and gp78 interact with similar high affinity to VCP, the R625 of gp78 is replaced by an Asp residue at the corresponding position in ANKZF1 and is not involved in any interaction. This interaction is compensated by the replacement Leu629 of gp78 to an Arg and Met628 by a Lys in ANKZ. This indicates that these N-terminal positively charged amino acids are not important for all VIM proteins (Stapf,2011). Compared to gp78, the SVIP VIM motif is elongated at both ends and makes significant interactions with the D1 domain and linker between N and D1 domain (Hanzelmann,2011). This accounts for its high-affinity interaction and efficient disruption of other VCP-cofactor complexes. The motif is conserved from yeast to human.
Pattern: [RKQ][^P]{1,3}[AG][^P]AA[^P]{1,2}R[^P]
Pattern Probability: 0.0000331
Present in taxon: Metazoa
Interaction Domain:
CDC48, N-terminal subdomain (IPR003338) The CDC48 N-terminal domain is a protein domain found in AAA ATPases including cell division protein 48 (CDC48), VCP-like ATPase (VAT) and N-ethylmaleimide sensitive fusion protein (Stochiometry: 1 : 1)
o See 9 Instances for LIG_VCP_VIM_2
The Endoplasmic Reticulum (ER) is an important eukaryotic cell organelle that has various functions, including the synthesis of proteins for export and quality control of nascent proteins. Newly synthesized proteins undergo folding and post-translational modifications in the ER. However, some proteins may not reach their native folded state. The ERAD (ER-Associated Degradation) mechanism acts as a protein quality control and removes these misfolded proteins. ERAD enables ER processing to distinguish the properly and improperly folded proteins in the ER lumen and then extracts them through membrane channels (dislocation or retrotranslocation) in an energy-dependent manner for delivery to cytosolic proteasomes. Nearly all ERAD substrates are ubiquitinated prior to their degradation and these ubiquitin chains provide a binding site for VCP (Valosin-Containing Protein). Thus ERAD is essential for ER homeostasis and correct functioning by degrading misfolded proteins (Hwang,2018).
Vertebrate VCP (also known as p97 or TERA for Transitional endoplasmic reticulum ATPase; Ter94 in fly, CDC48 in yeast) is a hexameric multidomain protein belonging to the functionally highly diverse AAA+ (ATPases Associated with diverse cellular Activities) superfamily of proteins. This large group of proteins drive numerous cell biological processes by converting chemical energy into mechanical energy (Khan,2022). As noted in PAXdb, VCP is a highly expressed protein, routinely observed to be amongst the top 5% of cellular proteins. VCP is likely an essential protein in all eukaryotes (Muller,2007). It is reported to be involved in a plethora of intracellular processes with the help of various co-factor proteins that specifically recruit ubiquitylated substrates. A tight control of VCP cofactor specificity and diversity as well as the assembly of higher-order VCP-cofactor complexes is accomplished by various regulatory mechanisms, which include bipartite binding, binding site competition, changes in oligomeric assemblies, and nucleotide-induced conformational changes (Hanzelmann,2017). More than 40 co-factor proteins have been identified so far, and most of them are multidomain proteins composed of specific VCP binding modules and additional domains that have functions in the recognition of ubiquitylated target proteins or possess catalytic domains or transmembrane domains (Buchberger,2015). Based on their functions, cofactors can be divided into three major classes: (i) Substrate-recruiting co-factors, such as the UFD1/NPL4 complex, link substrates to VCP and contain VCP interacting motifs and an additional ubiquitin binding domain that target ubiquitylated substrates; (ii) Substrate processing cofactors like ubiquitin (E3) ligases, deubiquitinases (DUBs) and cytosolic peptide N-glycanases (PNGase) process ubiquitylated, and N-glycosylated substrates; (iii) Regulatory cofactors like UBXD4, ASPL and SVIP sequester or recycle VCP hexamers. A few cofactors bind via their PUB or PUL domain to the unstructured C-terminal tail of VCP while the majority of the cofactors interact with the N-terminal VCP domain (CDC48_N; PF02359), often termed P97N, either via a UBX/UBXL globular domain or any one of three linear motifs, called VCP-Interacting Motif (VIM), VCP-Binding Motif (VBM), and SHP Box (named after yeast protein Shp1) (Hanzelmann,2017). In the nucleus, VCP is recruited for DNA damage repair by the SHP box protein Spartan (SPRTN) which specifically cleaves DNA-protein cross-links (Kroning,2022).

VIM and VBM are arginine-rich motifs found in several VCP cofactors with diverse functions (Buchberger,2015). The VCP CDC48_N domain has two subdomains or "lobes". The interdomain cleft between the Nn and Nc lobes of CDC48_N provides a sterically unopposed interface for the interaction of the various VCP cofactor proteins. Despite the absence of significant sequence similarity, the VBM and VIM motifs bind partially overlapping sites at the interdomain cleft of the N domain. Hence, one N domain can only interact with one of these motifs at a time, reducing the complexity of cofactor interactions to a combinatorial problem of six N domains per VCP hexamer. The SHP box motif interacts with the C-terminal Nc/NTD subdomain of VCP CDC48_N, a site distinct from that to which the other VCP ligands bind (Lim,2016). Competition for N domain binding has been experimentally verified for various combinations of cofactors possessing different binding modules, e.g. SHP/UBX-VIM (p47-UBXD1; Kern,2009), VIM-VBM (SVIP-HRD1; Liu,2013), VIM–SHP/UBXL (gp78 – UFD1‐NPL4; Ballar,2006). Among them, SVIP is the only cofactor that binds with high affinity to all six N domains through the VIM motif forming the 6:6 stoichiometry. It is an efficient competitor for N domain cofactors and acts as a negative regulator of the ERAD pathway.

ERAD is necessary to preserve cell integrity since the accumulation of defective proteins results in more than 60 diseases including neurological dysfunction, cancer and cystic fibrosis (Guerriero,2012). Mutations in VCP are also causative of three protein aggregation diseases, Multisystem Proteinopathy (MSP), Familial Amyotrophic Lateral Sclerosis (FALS) and Charcot-Marie-Tooth Disease Type2Y (CMT2Y) (Ye,2017).

Many viruses exploit ERAD processes to promote their viral replication and to avoid detection by the immune response. The herpesviruses manipulate the immune response by the degradation of Major Histocompatibility complex (MHC-1) through retrotranslocation by the viral proteins US2 and US11. Likewise, the accessory protein Vpu of HIV induces CD4 degradation through the ERAD process helping to promote HIV infection. Many bacterial toxins also use the ERAD to invade host cells, e.g., the cholera Toxin protein employs the ERAD to enter the cytosol (Morito,2015). Different virus strains of the Nidovirales order, including the coronaviruses, use the ER-derived tuning vesicles (EDEMosomes) and double-membrane vesicles (DMVs) to sequester their double-stranded RNA from cytosolic sensors that will trigger interferon production and innate immunity (Zhang,2020; Noack,2014). These observations suggest that there might be the potential for bacterial and viral proteins to harbour VCP interacting motifs to interfere with ERAD processes.
o 10 selected references:


o 15 GO-Terms:
Biological Process:
Membrane Protein Proteolysis Involved In Retrograde Protein Transport, Er To Cytosol (also annotated in these classes: LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 )
Erad Pathway (also annotated in these classes: LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 )
Protein Polyubiquitination (also annotated in these classes: DEG_CRL4_CDT2_1 DEG_CRL4_CDT2_2 DEG_Nend_Nbox_1 DEG_Nend_UBRbox_1 DEG_Nend_UBRbox_2 DEG_Nend_UBRbox_3 DEG_Nend_UBRbox_4 DEG_SCF_FBXO31_1 DEG_SCF_SKP2-CKS1_1 LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 )
Positive Regulation Of Erad Pathway (also annotated in these classes: LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 )
Cellular Response To Unfolded Protein (also annotated in these classes: LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 )
Protein Localization To Cytosolic Proteasome Complex Involved In Erad Pathway (also annotated in these classes: LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 )
Ubiquitin-Dependent Erad Pathway (also annotated in these classes: LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 )
Negative Regulation Of Protein-Containing Complex Assembly (also annotated in these classes: LIG_VCP_SHPBox_1 )
Cellular Compartment:
Cytosol (also annotated in these classes: CLV_C14_Caspase3-7 CLV_Separin_Fungi CLV_Separin_Metazoa DEG_APCC_DBOX_1 DEG_APCC_KENBOX_2 DEG_APCC_TPR_1 DEG_Cend_DCAF12_1 DEG_Cend_FEM1AC_1 DEG_Cend_FEM1B_2 DEG_Cend_KLHDC2_1 DEG_Cend_TRIM7_1 DEG_COP1_1 DEG_CRBN_cyclicCter_1 DEG_Kelch_actinfilin_1 DEG_Kelch_Keap1_1 DEG_Kelch_Keap1_2 DEG_Kelch_KLHL12_1 DEG_Kelch_KLHL3_1 DEG_MDM2_SWIB_1 DEG_Nend_Nbox_1 DEG_Nend_UBRbox_1 DEG_Nend_UBRbox_2 DEG_Nend_UBRbox_3 DEG_Nend_UBRbox_4 DEG_ODPH_VHL_1 DEG_SCF_FBW7_1 DEG_SCF_FBW7_2 DEG_SCF_FBXO31_1 DEG_SCF_SKP2-CKS1_1 DEG_SCF_TRCP1_1 DEG_SIAH_1 DOC_AGCK_PIF_1 DOC_AGCK_PIF_2 DOC_AGCK_PIF_3 DOC_ANK_TNKS_1 DOC_CDC14_PxL_1 DOC_CKS1_1 DOC_CYCLIN_D_Helix_1 DOC_CYCLIN_RevRxL_6 DOC_CYCLIN_RxL_1 DOC_CYCLIN_yClb1_LxF_4 DOC_CYCLIN_yClb3_PxF_3 DOC_CYCLIN_yCln2_LP_2 DOC_GSK3_Axin_1 DOC_MAPK_DCC_7 DOC_MAPK_FxFP_2 DOC_MAPK_gen_1 DOC_MAPK_GRA24_9 DOC_MAPK_HePTP_8 DOC_MAPK_JIP1_4 DOC_MAPK_MEF2A_6 DOC_MAPK_NFAT4_5 DOC_MAPK_RevD_3 DOC_MIT_MIM_1 DOC_PP1_MyPhoNE_1 DOC_PP1_RVXF_1 DOC_PP1_SILK_1 DOC_PP2A_B56_1 DOC_PP2A_KARD_1 DOC_PP2B_LxvP_1 DOC_PP2B_PxIxIT_1 DOC_PUB_PIM_1 DOC_RSK_DDVF_1 DOC_SPAK_OSR1_1 DOC_TBK1_STING_1 DOC_WD40_RPTOR_TOS_1 DOC_WW_Pin1_4 LIG_14-3-3_CanoR_1 LIG_14-3-3_ChREBP_3 LIG_14-3-3_CterR_2 LIG_ActinCP_CPI_1 LIG_ActinCP_TwfCPI_2 LIG_Actin_RPEL_3 LIG_Actin_WH2_1 LIG_Actin_WH2_2 LIG_ANK_PxLPxL_1 LIG_AP2alpha_1 LIG_AP2alpha_2 LIG_APCC_ABBA_1 LIG_APCC_Cbox_1 LIG_APCC_Cbox_2 LIG_AP_GAE_1 LIG_Arc_Nlobe_1 LIG_ARL_BART_1 LIG_BH_BH3_1 LIG_BIR_II_1 LIG_BIR_III_1 LIG_BIR_III_2 LIG_BIR_III_3 LIG_BIR_III_4 LIG_CaM_1-14-15-16_REV_1 LIG_CaM_1-26_7 LIG_CaM_1-5-10-14_3 LIG_CaM_1-8-14_4 LIG_CaM_1-8-9-10_5 LIG_CaM_1-8_REV_2 LIG_CaM_IQ_9 LIG_CaMK_CASK_1 LIG_CaM_NSCaTE_8 LIG_CAP-Gly_1 LIG_CAP-Gly_2 LIG_Clathr_ClatBox_1 LIG_Clathr_ClatBox_2 LIG_CNOT1_NIM_1 LIG_CSK_EPIYA_1 LIG_CtBP_PxDLS_1 LIG_deltaCOP1_diTrp_1 LIG_DLG_GKlike_1 LIG_Dynein_DLC8_1 LIG_EABR_CEP55_1 LIG_EF_ALG2_ABM_1 LIG_EF_ALG2_ABM_2 LIG_EH_1 LIG_eIF4E_1 LIG_eIF4E_2 LIG_EVH1_1 LIG_EVH1_2 LIG_EVH1_3 LIG_FAT_LD_1 LIG_FERM_MyoX_1 LIG_FZD_DVL_PDZ LIG_G3BP_FGDF_1 LIG_GBD_Chelix_1 LIG_GBD_WASP_1 LIG_GSK3_LRP6_1 LIG_GYF LIG_IBAR_NPY_1 LIG_IRF7_LxLS_2 LIG_IRFs_LxIS_1 LIG_KLC1_WD_1 LIG_KLC1_Yacidic_2 LIG_LIR_Apic_2 LIG_LIR_Gen_1 LIG_LIR_LC3C_4 LIG_LIR_Nem_3 LIG_LYPXL_L_2 LIG_LYPXL_S_1 LIG_LYPXL_yS_3 LIG_MYND_3 LIG_OCRL_FandH_1 LIG_PAM2_1 LIG_PAM2_2 LIG_PDZ_Class_1 LIG_PDZ_Class_2 LIG_PDZ_Class_3 LIG_PDZ_Wminus1_1 LIG_Pex14_1 LIG_Pex14_2 LIG_Pex14_3 LIG_Pex14_4 LIG_Pex3_1 LIG_PIP2_ANTH_1 LIG_PIP2_ENTH_1 LIG_PROFILIN_1 LIG_PTAP_UEV_1 LIG_PTB_Apo_2 LIG_PTB_Phospho_1 LIG_SH2_CRK LIG_SH2_GRB2like LIG_SH2_NCK_1 LIG_SH2_PTP2 LIG_SH2_SFK_2 LIG_SH2_SFK_CTail_3 LIG_SH2_STAT3 LIG_SH2_STAT5 LIG_SH2_STAT6 LIG_SH3_1 LIG_SH3_2 LIG_SH3_3 LIG_SH3_4 LIG_SH3_CIN85_PxpxPR_1 LIG_SH3_PxRPPK_7 LIG_SH3_PxxDY_5 LIG_SH3_PxxPPRxxK_8 LIG_SH3_PxxxRxxKP_6 LIG_SPRY_1 LIG_SUFU_1 LIG_SxIP_EBH_1 LIG_TPR LIG_TRAF2like_MATH_loPxQ_2 LIG_TRAF2like_MATH_shPxQ_1 LIG_TRAF3_MATH_PxP_3 LIG_TRAF4_MATH_1 LIG_TRAF6_MATH_1 LIG_TYR_ITAM LIG_TYR_ITIM LIG_TYR_ITSM LIG_UFM1_UFIM_1 LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 LIG_Vh1_VBS_1 LIG_WH1 LIG_WRC_WIRS_1 LIG_WW_1 LIG_WW_2 LIG_WW_3 MOD_AAK1BIKe_LxxQxTG_1 MOD_CAAXbox MOD_CDC14_SPxK_1 MOD_CDK_SPK_2 MOD_CDK_SPxK_1 MOD_CDK_SPxxK_3 MOD_CK1_1 MOD_CK2_1 MOD_DYRK1A_RPxSP_1 MOD_GSK3_1 MOD_LATS_1 MOD_LOK_YxT_1 MOD_NEK2_1 MOD_NEK2_2 MOD_NMyristoyl MOD_PIKK_1 MOD_PK_1 MOD_PKA_1 MOD_PKA_2 MOD_PKB_1 MOD_PLK MOD_Plk_1 MOD_Plk_2-3 MOD_Plk_4 MOD_PRMT_GGRGG_1 MOD_ProDKin_1 MOD_SPalmitoyl_2 MOD_SPalmitoyl_4 MOD_TYR_CSK MOD_TYR_DYR ELM:old_LIG_14-3-3_1 ELM:old_LIG_14-3-3_2 ELM:old_LIG_14-3-3_3 TRG_AP2beta_CARGO_1 TRG_Cilium_Arf4_1 TRG_Cilium_RVxP_2 TRG_DiLeu_BaEn_1 TRG_DiLeu_BaEn_2 TRG_DiLeu_BaEn_3 TRG_DiLeu_BaEn_4 TRG_DiLeu_BaLyEn_6 TRG_DiLeu_LyEn_5 TRG_ENDOCYTIC_2 TRG_ER_diArg_1 TRG_ER_diLys_1 TRG_ER_FFAT_1 TRG_ER_FFAT_2 TRG_Golgi_diPhe_1 TRG_LysEnd_APsAcLL_1 TRG_LysEnd_APsAcLL_3 TRG_LysEnd_GGAAcLL_1 TRG_LysEnd_GGAAcLL_2 TRG_NES_CRM1_1 TRG_NESrev_CRM1_2 TRG_PTS1 TRG_PTS2 )
Cytoplasmic Side Of Endoplasmic Reticulum Membrane (also annotated in these classes: DOC_TBK1_STING_1 LIG_EF_ALG2_ABM_1 LIG_EF_ALG2_ABM_2 LIG_IRFs_LxIS_1 LIG_TRAF6_MATH_1 LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 )
Endoplasmic Reticulum Quality Control Compartment (also annotated in these classes: LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 )
Nucleus (also annotated in these classes: CLV_C14_Caspase3-7 CLV_Separin_Fungi CLV_Separin_Metazoa CLV_TASPASE1 DEG_APCC_DBOX_1 DEG_APCC_KENBOX_2 DEG_APCC_TPR_1 DEG_Cend_DCAF12_1 DEG_Cend_FEM1AC_1 DEG_Cend_FEM1B_2 DEG_Cend_KLHDC2_1 DEG_Cend_TRIM7_1 DEG_COP1 DEG_COP1_1 DEG_CRL4_CDT2_1 DEG_CRL4_CDT2_2 DEG_Kelch_Keap1_1 DEG_Kelch_Keap1_2 DEG_MDM2_SWIB_1 DEG_ODPH_VHL_1 DEG_SCF_COI1_1 DEG_SCF_FBW7_1 DEG_SCF_FBW7_2 DEG_SCF_FBXO31_1 DEG_SCF_SKP2-CKS1_1 DEG_SCF_TIR1_1 DEG_SCF_TRCP1_1 DEG_SIAH_1 DEG_SPOP_SBC_1 DOC_ANK_TNKS_1 DOC_CDC14_PxL_1 DOC_CKS1_1 DOC_CYCLIN_D_Helix_1 DOC_CYCLIN_RevRxL_6 DOC_CYCLIN_RxL_1 DOC_CYCLIN_yClb1_LxF_4 DOC_CYCLIN_yClb3_PxF_3 DOC_CYCLIN_yClb5_NLxxxL_5 DOC_CYCLIN_yCln2_LP_2 DOC_MAPK_DCC_7 DOC_MAPK_FxFP_2 DOC_MAPK_gen_1 DOC_MAPK_GRA24_9 DOC_MAPK_HePTP_8 DOC_MAPK_JIP1_4 DOC_MAPK_MEF2A_6 DOC_MAPK_NFAT4_5 DOC_MAPK_RevD_3 DOC_PIKK_1 DOC_PP1_MyPhoNE_1 DOC_PP1_RVXF_1 DOC_PP1_SILK_1 DOC_PP2A_B56_1 DOC_PP2A_KARD_1 DOC_PP2B_LxvP_1 DOC_PP2B_PxIxIT_1 DOC_PP4_FxxP_1 DOC_PP4_MxPP_1 DOC_USP7_MATH_1 DOC_USP7_MATH_2 DOC_USP7_UBL2_3 DOC_WW_Pin1_4 LIG_14-3-3_CanoR_1 LIG_14-3-3_ChREBP_3 LIG_14-3-3_CterR_2 LIG_ANK_PxLPxL_1 LIG_APCC_ABBA_1 LIG_APCC_Cbox_1 LIG_APCC_Cbox_2 LIG_ARL_BART_1 LIG_ARS2_EDGEI_1 LIG_BRCT_BRCA1_1 LIG_BRCT_BRCA1_2 LIG_BRCT_MDC1_1 LIG_CaM_1-14-15-16_REV_1 LIG_CaMK_CASK_1 LIG_CORNRBOX LIG_CSL_BTD_1 LIG_CtBP_PxDLS_1 LIG_CtBP_RRT_2 LIG_DCNL_PONY_1 LIG_EF_ALG2_ABM_1 LIG_EF_ALG2_ABM_2 LIG_EH1_1 LIG_FHA_1 LIG_FHA_2 LIG_GLEBS_BUB3_1 LIG_HCF-1_HBM_1 LIG_HOMEOBOX LIG_HP1_1 LIG_IRF7_LxLS_2 LIG_IRFs_LxIS_1 LIG_KEPE_1 LIG_KEPE_2 LIG_KEPE_3 LIG_LEDGF_IBM_1 LIG_LSD1_SNAG_1 LIG_MAD2 LIG_Menin_MBM1_1 LIG_MLH1_MIPbox_1 LIG_MSH2_SHIPbox_1 LIG_MTR4_AIM_1 LIG_Mtr4_Air2_1 LIG_Mtr4_Trf4_1 LIG_Mtr4_Trf4_2 LIG_MYND_1 LIG_MYND_2 LIG_MYND_3 LIG_NBox_RRM_1 LIG_NRBOX LIG_Nrd1CID_NIM_1 LIG_PALB2_WD40_1 LIG_PCNA_APIM_2 LIG_PCNA_PIPBox_1 LIG_PCNA_TLS_4 LIG_PCNA_yPIPBox_3 LIG_PTAP_UEV_1 LIG_RBL1_LxSxE_2 LIG_RB_LxCxE_1 LIG_RB_pABgroove_1 LIG_REV1ctd_RIR_1 LIG_RPA_C_Plants LIG_RPA_C_Vert LIG_RRM_PRI_1 LIG_Rrp6Rrp47_Mtr4_1 LIG_Sin3_1 LIG_Sin3_2 LIG_Sin3_3 LIG_SUFU_1 LIG_SUMO_SIM_anti_2 LIG_SUMO_SIM_par_1 LIG_TPR LIG_Trf4_IWRxY_1 LIG_TRFH_1 LIG_UBA3_1 LIG_ULM_U2AF65_1 LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 LIG_WD40_WDR5_VDV_1 LIG_WD40_WDR5_VDV_2 LIG_WD40_WDR5_WIN_1 LIG_WD40_WDR5_WIN_2 LIG_WD40_WDR5_WIN_3 LIG_WRPW_1 LIG_WRPW_2 LIG_WW_2 MOD_AAK1BIKe_LxxQxTG_1 MOD_CDC14_SPxK_1 MOD_CDK_SPK_2 MOD_CDK_SPxK_1 MOD_CDK_SPxxK_3 MOD_CK1_1 MOD_CK2_1 MOD_DYRK1A_RPxSP_1 MOD_GSK3_1 MOD_NEK2_1 MOD_NEK2_2 MOD_PIKK_1 MOD_PKA_1 MOD_PKA_2 MOD_PKB_1 MOD_PLK MOD_Plk_1 MOD_Plk_2-3 MOD_Plk_4 MOD_PRMT_GGRGG_1 MOD_ProDKin_1 MOD_SUMO_for_1 MOD_SUMO_rev_2 ELM:old_LIG_14-3-3_1 ELM:old_LIG_14-3-3_2 ELM:old_LIG_14-3-3_3 TRG_NES_CRM1_1 TRG_NESrev_CRM1_2 TRG_NLS_Bipartite_1 TRG_NLS_MonoCore_2 TRG_NLS_MonoExtC_3 TRG_NLS_MonoExtN_4 )
Molecular Function:
Ubiquitin Binding (also annotated in these classes: LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 )
Protein Binding (also annotated in these classes: CLV_C14_Caspase3-7 CLV_Separin_Fungi CLV_Separin_Metazoa DEG_APCC_TPR_1 DEG_Cend_DCAF12_1 DEG_Cend_FEM1AC_1 DEG_Cend_FEM1B_2 DEG_Cend_KLHDC2_1 DEG_Cend_TRIM7_1 DEG_COP1 DEG_COP1_1 DEG_CRBN_cyclicCter_1 DEG_CRL4_CDT2_1 DEG_CRL4_CDT2_2 DEG_ODPH_VHL_1 DEG_SCF_COI1_1 DEG_SCF_FBW7_1 DEG_SCF_FBW7_2 DEG_SCF_FBXO31_1 DEG_SCF_SKP2-CKS1_1 DEG_SCF_TIR1_1 DEG_SCF_TRCP1_1 DEG_SIAH_1 DOC_AGCK_PIF_1 DOC_AGCK_PIF_2 DOC_AGCK_PIF_3 DOC_ANK_TNKS_1 DOC_CKS1_1 DOC_MAPK_DCC_7 DOC_MAPK_GRA24_9 DOC_MAPK_HePTP_8 DOC_MAPK_JIP1_4 DOC_MAPK_MEF2A_6 DOC_MAPK_NFAT4_5 DOC_PIKK_1 DOC_PP1_MyPhoNE_1 DOC_PP1_RVXF_1 DOC_PP1_SILK_1 DOC_PP2A_B56_1 DOC_PP2A_KARD_1 DOC_PP2B_LxvP_1 DOC_RSK_DDVF_1 DOC_SPAK_OSR1_1 DOC_WD40_RPTOR_TOS_1 LIG_14-3-3_ChREBP_3 LIG_ActinCP_CPI_1 LIG_ActinCP_TwfCPI_2 LIG_ANK_PxLPxL_1 LIG_AP2alpha_1 LIG_AP2alpha_2 LIG_APCC_Cbox_1 LIG_APCC_Cbox_2 LIG_AP_GAE_1 LIG_ARL_BART_1 LIG_ARS2_EDGEI_1 LIG_BH_BH3_1 LIG_BIR_II_1 LIG_BIR_III_1 LIG_BIR_III_2 LIG_BIR_III_3 LIG_BIR_III_4 LIG_CaM_IQ_9 LIG_CaMK_CASK_1 LIG_CNOT1_NIM_1 LIG_deltaCOP1_diTrp_1 LIG_DLG_GKlike_1 LIG_Dynein_DLC8_1 LIG_EABR_CEP55_1 LIG_EF_ALG2_ABM_1 LIG_EF_ALG2_ABM_2 LIG_EH_1 LIG_eIF4E_1 LIG_eIF4E_2 LIG_EVH1_1 LIG_EVH1_2 LIG_FAT_LD_1 LIG_FHA_1 LIG_FHA_2 LIG_FXI_DFP_1 LIG_GLEBS_BUB3_1 LIG_HCF-1_HBM_1 LIG_IBAR_NPY_1 LIG_Integrin_isoDGR_2 LIG_IRF7_LxLS_2 LIG_IRFs_LxIS_1 LIG_KLC1_Yacidic_2 LIG_LEDGF_IBM_1 LIG_LIR_Apic_2 LIG_LIR_Gen_1 LIG_LIR_LC3C_4 LIG_LIR_Nem_3 LIG_LRP6_Inhibitor_1 LIG_LSD1_SNAG_1 LIG_LYPXL_L_2 LIG_LYPXL_S_1 LIG_LYPXL_SIV_4 LIG_LYPXL_yS_3 LIG_MAD2 LIG_Menin_MBM1_1 LIG_MLH1_MIPbox_1 LIG_MSH2_SHIPbox_1 LIG_MTR4_AIM_1 LIG_Mtr4_Air2_1 LIG_Mtr4_Trf4_1 LIG_Mtr4_Trf4_2 LIG_MYND_3 LIG_Nrd1CID_NIM_1 LIG_NRP_CendR_1 LIG_OCRL_FandH_1 LIG_PALB2_WD40_1 LIG_PDZ_Class_1 LIG_PDZ_Class_2 LIG_PDZ_Class_3 LIG_PDZ_Wminus1_1 LIG_Pex14_1 LIG_Pex14_2 LIG_Pex3_1 LIG_PTB_Apo_2 LIG_PTB_Phospho_1 LIG_RBL1_LxSxE_2 LIG_RB_pABgroove_1 LIG_REV1ctd_RIR_1 LIG_RPA_C_Plants LIG_RPA_C_Vert LIG_RuBisCO_WRxxL_1 LIG_SH2_CRK LIG_SH2_GRB2like LIG_SH2_NCK_1 LIG_SH2_SFK_2 LIG_SH2_SFK_CTail_3 LIG_SH2_STAP1 LIG_SH3_1 LIG_SH3_2 LIG_SH3_3 LIG_SH3_4 LIG_SH3_CIN85_PxpxPR_1 LIG_SH3_PxxDY_5 LIG_SPRY_1 LIG_SUFU_1 LIG_TRAF2like_MATH_loPxQ_2 LIG_TRAF2like_MATH_shPxQ_1 LIG_TRAF3_MATH_PxP_3 LIG_TRAF4_MATH_1 LIG_TRAF6_MATH_1 LIG_Trf4_IWRxY_1 LIG_UFM1_UFIM_1 LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 LIG_Vh1_VBS_1 LIG_WD40_WDR5_VDV_1 LIG_WD40_WDR5_VDV_2 LIG_WD40_WDR5_WIN_1 LIG_WD40_WDR5_WIN_2 LIG_WD40_WDR5_WIN_3 LIG_WH1 LIG_WRC_WIRS_1 LIG_WW_1 LIG_WW_2 LIG_WW_3 MOD_Plk_2-3 MOD_Plk_4 MOD_PRMT_GGRGG_1 TRG_AP2beta_CARGO_1 TRG_Cilium_Arf4_1 TRG_Cilium_RVxP_2 TRG_DiLeu_BaEn_1 TRG_DiLeu_BaEn_2 TRG_DiLeu_BaEn_3 TRG_DiLeu_BaEn_4 TRG_DiLeu_BaLyEn_6 TRG_DiLeu_LyEn_5 TRG_ER_diLys_1 TRG_ER_FFAT_1 TRG_ER_FFAT_2 TRG_Golgi_diPhe_1 TRG_LysEnd_APsAcLL_1 TRG_LysEnd_APsAcLL_3 TRG_LysEnd_GGAAcLL_1 TRG_LysEnd_GGAAcLL_2 TRG_NES_CRM1_1 TRG_NESrev_CRM1_2 TRG_NLS_Bipartite_1 TRG_NLS_MonoCore_2 TRG_NLS_MonoExtC_3 TRG_NLS_MonoExtN_4 )
Protein-Folding Chaperone Binding (also annotated in these classes: LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 )


o 9 Instances for LIG_VCP_VIM_2
(click table headers for sorting; Notes column: =Number of Switches, =Number of Interactions)
Acc., Gene-, NameStartEndSubsequenceLogic#Ev.OrganismNotes
Q9UKV5 AMFR
AMFR_HUMAN
626 637 VTLRRRMLAAAAERRLQKQQ TP 3 Homo sapiens (Human)
1
Q9R049 Amfr
AMFR_MOUSE
626 637 VTLRRRMLAAAAERRLQRQR TP 2 Mus musculus (House mouse)
1
Q9H8Y5 ANKZF1
ANKZ1_HUMAN
655 666 ALSDREKRALAAERRLAAQL TP 5 Homo sapiens (Human)
1
Q9BZV1 UBXN6
UBXN6_HUMAN
53 63 TNEAQMAAAAALARLEQKQS U 5 Homo sapiens (Human)
1
Q9BQE4 SELENOS
SELS_HUMAN
78 87 DVVVKRQEALAAARLKMQEE TP 1 Homo sapiens (Human)
Q8WV99 ZFAND2B
ZFN2B_HUMAN
143 152 GHPTSRAGLAAISRAQAVAS TP 3 Homo sapiens (Human)
1
Q8NHG7 SVIP
SVIP_HUMAN
22 33 LEEKRAKLAEAAERRQKEAA TP 4 Homo sapiens (Human)
1
Q04311 VMS1
VMS1_YEAST
617 628 RRLMREQRARAAEERMKKKY TP 2 Saccharomyces cerevisiae S288c
1
P38838 WSS1
WSS1_YEAST
209 220 GNSPRELAAFAAERRYRDDR TP 2 Saccharomyces cerevisiae S288c
1
Please cite: ELM-the Eukaryotic Linear Motif resource-2024 update. (PMID:37962385)

ELM data can be downloaded & distributed for non-commercial use according to the ELM Software License Agreement

AltStyle によって変換されたページ (->オリジナル) /