ELM
The Eukaryotic Linear Motif resource for
Functional Sites in Proteins

LIG_KLC1_WD_1

Accession:
Functional site class:
Motifs binding the TPR domain of kinesin light chain 1
Functional site description:
Kinesins are important microtubule motors for binding and anterograde transport of cellular cargo such as vesicles and organelles. The conventional kinesin 1 oligomer consists of a heavy chain dimer functioning as an ATP hydrolysing motor domain and two identical light chains (KLC) containing tetratricopeptide repeat (TPR) regions for binding cellular cargo. These TPRs form rod-like structures that mediate protein interactions by recognizing and binding a variety of cargo proteins such as caytaxin and calsyntenin, proteins involved in neuronal development and maturation. Since the KLC TPR is also recruited by viral envelope and bacterial associated proteins it is also important to the life cycle of invasive pathogens. A 'WD' motif has been shown to bind the KLC1 and KLC2 TPR and thereby mediate cargo transport. More recently a second class of KLC1 isoform-specific motif, termed 'Y-acidic’ has been identified in some adaptor proteins like JIP1 and TorsinA.

ELMs with same func. site: LIG_KLC1_WD_1 LIG_KLC1_Yacidic_2
ELM Description:
The 'WD' motif is found in many cellular cargo proteins and is able to bind to the TPR region of the KLCs from kinesin 1. Hereby proteins such as calsyntenin, caytaxin, BNIP members and Gadkin recruit the KLC TPR to mediate active transport of molecules and vesicles in the plus-end direction along the microtubules. The motif consists of a WD or WE core often surrounded by other acidic residues. In most cases the motif also includes an L or other hydrophobic residue at two positions, one prior to the W and the other 5 or 6 residues after. The binding groove of TPR stabilises the binding motif with salt bridges and hydrogen bonds. It provides a leucine-rich pocket binding the W as well as a hydrophobic pocket holding the first L residue of the motif as shown in the crystal structure of KLC2 TPR with a peptide of SifA-kinesin interacting protein (SKIP or PKHM2; 3ZFW, Pernigo,2013). Most often, the motif is located toward C- or N-terminal regions of the cargo proteins. The motif has been associated with KLC1 and KLC2 but since the binding pocket is well-conserved it is likely to also bind other KLCs. Very often the 'WD' motif appears in pairs (bipartite) usually separated by less than 100 amino acids, suggesting cooperative function. However experimental evidence suggests that one motif can be sufficient for KLC binding. The consensus of the different 'WD' motifs could be summarised in the expression: φ[-]W[DE] [^+].{3,4}φ

Besides its cellular functions, the WD motif is also involved in bacterial pathogenesis mechanisms as in the targeted host protein SKIP and is also found in various viral proteins, such as A36 and F12 in vaccinia virus. Pathogens use the motif in order to 'hijack' cellular transport mechanisms and regulate movement of bacterial vacuoles or entire viruses within the cell.
Pattern: [LMTAFSRI][^KRG]W[DE].{3,5}[LIVMFPA]
Pattern Probability: 0.0003538
Present in taxons: Eukaryota Poxviridae
Interaction Domain:
TPR (SM00028) Tetratricopeptide repeats. (Stochiometry: 1 : 1)
o See 22 Instances for LIG_KLC1_WD_1
Intracellular trafficking is strongly dependent on microtubule motor proteins such as kinesins or dyneins. The kinesin superfamily is comprised of ATPases that use energy to move macromolecules and organelles within the cell in the plus-end direction along microtubules. They can be classified into 15 subfamilies characterised by distinct structural modules and cellular functions (Verhey,2009, Hirokawa,2015). Kinesin 1, which is also known as conventional kinesin, is a heterotetramer consisting of two different subunits - the kinesin heavy chain (KHC) and the kinesin light chain (KLC). Thereby the KHCs provide the active motor function and the KLCs link the motor domain to the various cargo proteins for cargoes including vesicles, organelles, and mRNA. In particular the KLC TetratricoPeptide Repeats (TPR) that are well conserved in all four KLC paralogues, are key to this function since this region mediates the cargo recognition.
The TPR domain is found in many different proteins and with its structure of anti-parallel alpha-helices it provides an ideal interaction surface for other proteins. This structural domain, therefore, is important for a number of cellular processes involving protein interactions and the formation of multi-protein complexes. In the case of kinesin cargo binding, the TPRs recognise specific motifs that are essential for initiation of microtubule transport. An example for kinesin-dependent transport is the movement of vesicles containing neuronal peptides from the site of synthesis to more distant cellular regions and this is the basis for axonal growth as seen in calsyntenin (Konecna,2006) . Also caytaxin is transported by a similar mechanism and, if deficient, this causes clinical symptoms of dystonia and ataxia (Aoyama,2009). It has further been shown that lysosomes require kinesin-mediated microtubule transport for their intracellular distribution (Rosa-Ferreira,2011). Calsyntenin, caytaxin and other kinesin-1-associated cellular proteins have been found to possess similar 'WD' motifs responsible for binding to the KLC TPR module (Dodding,2011)
An alternative to the W-acidic motif, the "Y-acidic motif" was subsequently found in two proteins, JIP1 and TorsinA (Nguyen,2018; Pernigo,2018). The latter interact at a partially overlapped binding site relative to the W-acidic motif and therefore act independently. The c-Jun NH2-terminal kinase (JNK)-interacting protein 1 (JIP1) is involved in the anterograde transport of the amyloid precursor protein (APP), a key determinant in Alzheimer’s disease. TorsinA is a constitutively inactive AAA+ protein whose gene is linked to early-onset dystonia type 1 (DYT1) (Pernigo,2018). A third protein, the signalling adaptor SH2D6 has a Y-acidic motif that binds with lower affinity (Nguyen,2018).
Pathogens have evolved systems to hijack the Kinesin 1 system: Vaccinia virus integral membrane protein A36 utilises kinesin-mediated trafficking by mimicking the cellular WD TPR-binding motif for the transport of intracellular enveloped viruses towards the cell surface (Dodding,2011). Also SKIP, a cellular trafficking protein with a role in Golgi maintenance that is hijacked by the Salmonella major virulence protein SifA, possess a pair of WD motifs for KLC binding (Rosa-Ferreira,2011; Pernigo,2013). Understanding of the exact mechanisms of TPR:WD interactions in trafficking might provide insight or even intervention opportunities in pathological processes.
o 8 selected references:


o 7 GO-Terms:
Biological Process:
Protein Transport Along Microtubule (also annotated in class: )
Plus-End-Directed Vesicle Transport Along Microtubule (also annotated in class: )
Microtubule-Dependent Intracellular Transport Of Viral Material (also annotated in class: )
Synaptic Vesicle Transport Along Microtubule (also annotated in class: )
Cellular Compartment:
Cytosol (also annotated in these classes: CLV_C14_Caspase3-7 CLV_Separin_Fungi CLV_Separin_Metazoa DEG_APCC_DBOX_1 DEG_APCC_KENBOX_2 DEG_APCC_TPR_1 DEG_Cend_DCAF12_1 DEG_Cend_FEM1AC_1 DEG_Cend_FEM1B_2 DEG_Cend_KLHDC2_1 DEG_Cend_TRIM7_1 DEG_COP1_1 DEG_CRBN_cyclicCter_1 DEG_Kelch_actinfilin_1 DEG_Kelch_Keap1_1 DEG_Kelch_Keap1_2 DEG_Kelch_KLHL12_1 DEG_Kelch_KLHL3_1 DEG_MDM2_SWIB_1 DEG_Nend_Nbox_1 DEG_Nend_UBRbox_1 DEG_Nend_UBRbox_2 DEG_Nend_UBRbox_3 DEG_Nend_UBRbox_4 DEG_ODPH_VHL_1 DEG_SCF_FBW7_1 DEG_SCF_FBW7_2 DEG_SCF_FBXO31_1 DEG_SCF_SKP2-CKS1_1 DEG_SCF_TRCP1_1 DEG_SIAH_1 DOC_AGCK_PIF_1 DOC_AGCK_PIF_2 DOC_AGCK_PIF_3 DOC_ANK_TNKS_1 DOC_CDC14_PxL_1 DOC_CKS1_1 DOC_CYCLIN_D_Helix_1 DOC_CYCLIN_RevRxL_6 DOC_CYCLIN_RxL_1 DOC_CYCLIN_yClb1_LxF_4 DOC_CYCLIN_yClb3_PxF_3 DOC_CYCLIN_yCln2_LP_2 DOC_GSK3_Axin_1 DOC_MAPK_DCC_7 DOC_MAPK_FxFP_2 DOC_MAPK_gen_1 DOC_MAPK_GRA24_9 DOC_MAPK_HePTP_8 DOC_MAPK_JIP1_4 DOC_MAPK_MEF2A_6 DOC_MAPK_NFAT4_5 DOC_MAPK_RevD_3 DOC_MIT_MIM_1 DOC_PP1_MyPhoNE_1 DOC_PP1_RVXF_1 DOC_PP1_SILK_1 DOC_PP2A_B56_1 DOC_PP2A_KARD_1 DOC_PP2B_LxvP_1 DOC_PP2B_PxIxIT_1 DOC_PUB_PIM_1 DOC_RSK_DDVF_1 DOC_SPAK_OSR1_1 DOC_TBK1_STING_1 DOC_WD40_RPTOR_TOS_1 DOC_WW_Pin1_4 LIG_14-3-3_CanoR_1 LIG_14-3-3_ChREBP_3 LIG_14-3-3_CterR_2 LIG_ActinCP_CPI_1 LIG_ActinCP_TwfCPI_2 LIG_Actin_RPEL_3 LIG_Actin_WH2_1 LIG_Actin_WH2_2 LIG_ANK_PxLPxL_1 LIG_AP2alpha_1 LIG_AP2alpha_2 LIG_APCC_ABBA_1 LIG_APCC_Cbox_1 LIG_APCC_Cbox_2 LIG_AP_GAE_1 LIG_Arc_Nlobe_1 LIG_ARL_BART_1 LIG_BH_BH3_1 LIG_BIR_II_1 LIG_BIR_III_1 LIG_BIR_III_2 LIG_BIR_III_3 LIG_BIR_III_4 LIG_CaM_1-14-15-16_REV_1 LIG_CaM_1-26_7 LIG_CaM_1-5-10-14_3 LIG_CaM_1-8-14_4 LIG_CaM_1-8-9-10_5 LIG_CaM_1-8_REV_2 LIG_CaM_IQ_9 LIG_CaMK_CASK_1 LIG_CaM_NSCaTE_8 LIG_CAP-Gly_1 LIG_CAP-Gly_2 LIG_Clathr_ClatBox_1 LIG_Clathr_ClatBox_2 LIG_CNOT1_NIM_1 LIG_CSK_EPIYA_1 LIG_CtBP_PxDLS_1 LIG_deltaCOP1_diTrp_1 LIG_DLG_GKlike_1 LIG_Dynein_DLC8_1 LIG_EABR_CEP55_1 LIG_EF_ALG2_ABM_1 LIG_EF_ALG2_ABM_2 LIG_EH_1 LIG_eIF4E_1 LIG_eIF4E_2 LIG_EVH1_1 LIG_EVH1_2 LIG_EVH1_3 LIG_FAT_LD_1 LIG_FERM_MyoX_1 LIG_FZD_DVL_PDZ LIG_G3BP_FGDF_1 LIG_GBD_Chelix_1 LIG_GBD_WASP_1 LIG_GSK3_LRP6_1 LIG_GYF LIG_IBAR_NPY_1 LIG_IRF7_LxLS_2 LIG_IRFs_LxIS_1 LIG_KLC1_Yacidic_2 LIG_LIR_Apic_2 LIG_LIR_Gen_1 LIG_LIR_LC3C_4 LIG_LIR_Nem_3 LIG_LYPXL_L_2 LIG_LYPXL_S_1 LIG_LYPXL_yS_3 LIG_MYND_3 LIG_OCRL_FandH_1 LIG_PAM2_1 LIG_PAM2_2 LIG_PDZ_Class_1 LIG_PDZ_Class_2 LIG_PDZ_Class_3 LIG_PDZ_Wminus1_1 LIG_Pex14_1 LIG_Pex14_2 LIG_Pex14_3 LIG_Pex14_4 LIG_Pex3_1 LIG_PIP2_ANTH_1 LIG_PIP2_ENTH_1 LIG_PROFILIN_1 LIG_PTAP_UEV_1 LIG_PTB_Apo_2 LIG_PTB_Phospho_1 LIG_SH2_CRK LIG_SH2_GRB2like LIG_SH2_NCK_1 LIG_SH2_PTP2 LIG_SH2_SFK_2 LIG_SH2_SFK_CTail_3 LIG_SH2_STAT3 LIG_SH2_STAT5 LIG_SH2_STAT6 LIG_SH3_1 LIG_SH3_2 LIG_SH3_3 LIG_SH3_4 LIG_SH3_CIN85_PxpxPR_1 LIG_SH3_PxRPPK_7 LIG_SH3_PxxDY_5 LIG_SH3_PxxPPRxxK_8 LIG_SH3_PxxxRxxKP_6 LIG_SPRY_1 LIG_SUFU_1 LIG_SxIP_EBH_1 LIG_TPR LIG_TRAF2like_MATH_loPxQ_2 LIG_TRAF2like_MATH_shPxQ_1 LIG_TRAF3_MATH_PxP_3 LIG_TRAF4_MATH_1 LIG_TRAF6_MATH_1 LIG_TYR_ITAM LIG_TYR_ITIM LIG_TYR_ITSM LIG_UFM1_UFIM_1 LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 LIG_VCP_VIM_2 LIG_Vh1_VBS_1 LIG_WH1 LIG_WRC_WIRS_1 LIG_WW_1 LIG_WW_2 LIG_WW_3 MOD_AAK1BIKe_LxxQxTG_1 MOD_CAAXbox MOD_CDC14_SPxK_1 MOD_CDK_SPK_2 MOD_CDK_SPxK_1 MOD_CDK_SPxxK_3 MOD_CK1_1 MOD_CK2_1 MOD_DYRK1A_RPxSP_1 MOD_GSK3_1 MOD_LATS_1 MOD_LOK_YxT_1 MOD_NEK2_1 MOD_NEK2_2 MOD_NMyristoyl MOD_PIKK_1 MOD_PK_1 MOD_PKA_1 MOD_PKA_2 MOD_PKB_1 MOD_PLK MOD_Plk_1 MOD_Plk_2-3 MOD_Plk_4 MOD_PRMT_GGRGG_1 MOD_ProDKin_1 MOD_SPalmitoyl_2 MOD_SPalmitoyl_4 MOD_TYR_CSK MOD_TYR_DYR ELM:old_LIG_14-3-3_1 ELM:old_LIG_14-3-3_2 ELM:old_LIG_14-3-3_3 TRG_AP2beta_CARGO_1 TRG_Cilium_Arf4_1 TRG_Cilium_RVxP_2 TRG_DiLeu_BaEn_1 TRG_DiLeu_BaEn_2 TRG_DiLeu_BaEn_3 TRG_DiLeu_BaEn_4 TRG_DiLeu_BaLyEn_6 TRG_DiLeu_LyEn_5 TRG_ENDOCYTIC_2 TRG_ER_diArg_1 TRG_ER_diLys_1 TRG_ER_FFAT_1 TRG_ER_FFAT_2 TRG_Golgi_diPhe_1 TRG_LysEnd_APsAcLL_1 TRG_LysEnd_APsAcLL_3 TRG_LysEnd_GGAAcLL_1 TRG_LysEnd_GGAAcLL_2 TRG_NES_CRM1_1 TRG_NESrev_CRM1_2 TRG_PTS1 TRG_PTS2 )
Cytoskeleton (also annotated in these classes: LIG_ActinCP_CPI_1 LIG_ActinCP_TwfCPI_2 LIG_CaM_1-8_REV_2 LIG_Clathr_ClatBox_1 LIG_Clathr_ClatBox_2 LIG_EABR_CEP55_1 LIG_EVH1_3 LIG_SH3_CIN85_PxpxPR_1 )
Molecular Function:
Tpr Domain Binding (also annotated in class: )


o 22 Instances for LIG_KLC1_WD_1
(click table headers for sorting; Notes column: =Number of Switches, =Number of Interactions)
Acc., Gene-, NameStartEndSubsequenceLogic#Ev.OrganismNotes
O14576 DYNC1I1
DC1I1_HUMAN
124 133 PLTRTLQWDTDPSVLQLQSD TP 1 Homo sapiens (Human)
O14576 DYNC1I1
DC1I1_HUMAN
81 88 VQPLHFLTWDTCYFHYLVPT TP 1 Homo sapiens (Human)
Q63HQ0 AP1AR
AP1AR_HUMAN
258 267 DDSNGLEWENDFVSAEMDDN TP 3 Homo sapiens (Human)
1
Q63HQ0 AP1AR
AP1AR_HUMAN
208 216 STSLDLEWEDEEGMNRMLPM TP 1 Homo sapiens (Human)
Q8WUY3 PRUNE2
PRUN2_HUMAN
1136 1145 DMDNDLDWDDCSGGAAIPSD TP 1 Homo sapiens (Human)
Q7Z465 BNIPL
BNIPL_HUMAN
141 150 DSGHEFEWEDELPRAEGLGT TP 1 Homo sapiens (Human)
Q12982 BNIP2
BNIP2_HUMAN
95 104 ENSNEFEWEDDLPKPKTTEV TP 4 Homo sapiens (Human)
1
Q8WXH0 SYNE2
SYNE2_HUMAN
6417 6425 VDSIPLEWDHTGDVGGSSSH TP 2 Homo sapiens (Human)
1
Q1M168 Atcay
ATCAY_RAT
116 125 GNGNELEWEDDTPVATAKNM TP 3 Rattus norvegicus (Norway rat)
1
Q8BHE3 Atcay
ATCAY_MOUSE
116 125 GNGNELEWEDDTPVATAKNM TP 5 Mus musculus (House mouse)
1
Q86WG3 ATCAY
ATCAY_HUMAN
116 125 GNGNELEWEDDTPVATAKNM TP 1 Homo sapiens (Human)
1
Q9EPL2 Clstn1
CSTN1_MOUSE
970 977 PGDGQNATRQLEWDDSTLSY TP 4 Mus musculus (House mouse)
2
Q9EPL2 Clstn1
CSTN1_MOUSE
901 910 GKENEMDWDDSALTITVNPM TP 4 Mus musculus (House mouse)
2
O94985 CLSTN1
CSTN1_HUMAN
972 979 DPQNATRQQQLEWDDSTLSY TP 6 Homo sapiens (Human)
1
O94985 CLSTN1
CSTN1_HUMAN
901 910 GKENEMDWDDSALTITVNPM TP 4 Homo sapiens (Human)
1
Q8IWE5 PLEKHM2
PKHM2_HUMAN
234 241 VPSVPSTDWEDGDLTDTVSG TP 8 Homo sapiens (Human)
2
Q8IWE5 PLEKHM2
PKHM2_HUMAN
205 214 VTSTNLEWDDSAIAPSSEDY TP 9 Homo sapiens (Human)
2
Q80HX6 VACWR051
F12_VACCW
534 543 VELGALQWDDNIPELKHGLL TP 2 Vaccinia virus WR
1
A9J0X2 CVA167
A9J0X2_VACCA
95 104 SFAGSLIWDNESNVMAPSTE TP 2 Vaccinia virus Ankara
A9J0X2 CVA167
A9J0X2_VACCA
62 71 STDSESDWEDHCSAMEQNND TP 2 Vaccinia virus Ankara
P68619 VACWR159
A36_VACCW
95 104 SFAGSLIWDNESNVMAPSTE TP 5 Vaccinia virus WR
2
P68619 VACWR159
A36_VACCW
62 71 STDSESDWEDHCSAMEQNND TP 2 Vaccinia virus WR
1
Please cite: ELM-the Eukaryotic Linear Motif resource-2024 update. (PMID:37962385)

ELM data can be downloaded & distributed for non-commercial use according to the ELM Software License Agreement

AltStyle によって変換されたページ (->オリジナル) /