ELM
The Eukaryotic Linear Motif resource for
Functional Sites in Proteins

MOD_CDC14_SPxK_1

Accession:
Functional site class:
Cdc14 phosphatase dephosphorylation site
Functional site description:
Progression through the cell cycle is driven by sequentially changing sets of substrates getting phosphorylated by Cdk(s) coupled to cyclin activators with distinct substrate specificities. In yeast, Cdc14 is a widely conserved, dimeric, cell-cycle regulated phosphatase that is a key regulator of mitotic exit events by dephosphorylating a subset of Cdk1 substrates. It is inhibited by Net1 during most of the cell cycle and gets only activated during mitotic exit, leading to its nuclear translocation and the sequential dephosphorylation of its targets. Although Cdc14 homologues show differences in the timing, targets and functional readout of their phosphatase activities, their target specificity for (S)PxK/r phosphosites is mostly conserved. Interestingly, docking of the non-catalytic, N-terminal domain of budding yeast Cdc14 to a PxL motif on substrates can facilitate the recognition and dephosphorylation even of substrates carrying suboptimal phosphosites, a mechanism yet to be validated in other organisms.
ELM Description:
The optimal Cdc14 target recognition consensus motif (S)P.[Kr] was derived from mutational analyses combined with in vitro phosphopeptide dephosphorylation assays (Bremmer,2012). The results suggested that phosphothreonines are very weak substrates of Cdc14, proline is absolutely required in the +2 position and that a positive residue is strongly favoured in the +4 position, with lysine being more favourable for efficient catalysis than arginine. Additional positive charges in the +3, +5 or +6 positions confer slight improvements in catalytic efficiency (Bremmer,2012), but they are not strictly required based on the experimentally validated instances. Although the human Cdc14 homologues, CDC14A and CDC14B and the fission yeast Clp1 showed similar residue preferences in peptide dephosphorylation assays, and the residues contributing to the active site are highly conserved (Bremmer,2012), phosphosites of their experimentally validated substrates suggest that they have a more relaxed recognition pattern, wherein the +4 position does not require a positively charged residue.
The structure of the complex between a phosphatase-dead mutant of Cdc14 and an S-phosphorylated Swi6p peptide provides information on the catalytic mechanism of Cdc14 (5XW5). A structure of human CDC14B with a substrate peptide is also available, but unfortunately the peptide is too short to contain the positive residues in the positions following the (S)P (1OHE; Gray,2003). Phosphothreonines are poor Cdc14 substrates, mainly due to a steric clash with the methyl group of a conserved alanine residue contributing to the phosphatase active site (Bremmer,2012; Eissler,2014).
Results of high-throughput phosphoproteomics studies (Eissler,2014; Powers,2017) and peptide docking simulations (Eissler,2014) also confirmed the (S)P.[Kr] motif.
Pattern: (S)P.[KR]
Pattern Probability: 0.0012270
Present in taxon: Eukaryota
Interaction Domain:
DSPc (PF00782) Dual specificity phosphatase, catalytic domain (Stochiometry: 1 : 1)
o See 48 Instances for MOD_CDC14_SPxK_1
Progression through the cell cycle is driven by sequentially changing sets of substrate proteins getting phosphorylated by Cdk(s). This is ensured by sequentially expressed cyclin activators that confer distinct substrate specificities on Cdk(s) in different phases of the cycle. During the cell cycle, Cdk activity is modulated by opposing phosphatase activities. In budding yeast, Cdc14 acts as one of the antagonists of Cdk activity regulating a well-defined subset of Cdk substrates mainly participating in late mitotic events such as chromosome segregation, spindle disassembly, DNA damage response and cytokinesis (Bremmer,2012; Eissler,2014; Kao,2014; Powers,2017; Mocciaro,2010; Villoria,2017; Manzano-Lopez,2020). Although Cdc14 homologues have been identified in a wide range of eukaryotes and their target specificities are mostly conserved (Bremmer,2012; Li,2015; Vazquez-Novelle,2005), the key role played in mitotic exit is yet only confirmed in budding yeasts. For instance, the fission yeast Cdc14 homologue, Cdc14-like phosphatase 1 (Clp1; also known as Flp1; Q9P7H1), contributes to the control of cytokinesis, but is not required for other aspects of mitotic exit or Cdk1 inactivation (Trautmann,2004). The Caenorhabditis elegans Cdc14 homologue, cdc-14 (P81299), does not function in mitosis, rather it is crucial for G(1)/S regulation to establish developmental cell-cycle quiescence (Saito,2004). Among the vertebrate homologues, CDC14B (O60729) is functionally related to yeast Cdc14 and plays major roles in functions such as the G2/M DNA damage checkpoint, DNA repair and centrosome duplication, while CDC14A (Q9UNH5) is involved in centrosome separation and cytokinesis, suggesting that the functions of CDC14 phosphatases have been partially rewired during eukaryotic evolution but preserve important hallmarks (Mocciaro,2010; Powers,2017).
The yeast Cdc14 protein belongs to the dual-specificity phosphatase family (PF00782). Cdc14 is sequestered in the nucleolus for most of the cell cycle by the nucleolar proteins Net1 and Tof2, and is only released into the nucleoplasm and cytosol during anaphase (Visintin,1999; Shou,1999). In anaphase, the so called Fourteen Early Anaphase Release (FEAR) network (including Cdc5, Esp1, and Slk19), and the mitotic exit network (MEN; including the Dbf2-Mob1 complex) co-ordinately trigger the release of Cdc14 from the nucleolus (Shou,1999). Subsequently, Cdc14 performs the sequential dephosphorylation of its targets (Bouchoux,2011). Both the molecular mechanism of (in)activation and the timing of activity during the cell cycle show remarkable differences between Cdc14 homologues (Powers,2017; Manzano-Lopez,2020).
In vitro, Cdc14 strongly favours dephosphorylation of phosphoserines followed by a proline, with an additional positively charged residue (preferentially lysine) in the +4 position ((S)PxK/r) which, maybe not surprisingly, conforms to a restricted version of the Cdk consensus phosphorylation motif (Bremmer,2012; MOD_CDK_SPxK_1). Phosphothreonines are poor Cdc14 substrates, due to a steric clash with the methyl group of a conserved alanine residue of the phosphatase active site (Bremmer,2012; Eissler,2014). In vitro phosphatase assays using wildtype or mutated phosphorylated target peptides clearly indicated that lysine in the +3 position enables higher catalytic efficiency than arginine (Bremmer,2012; Eissler,2014). Also, additional positively charged residues in the +3, +5 or +6 positions of the phosphorylated target motifs further enhance the catalytic efficiency of yeast Cdc14 (Bremmer,2012). Based on the experimentally validated targets of Cdc14, lysine over arginine in the +4 position and the additional positively charged residues in the surrounding positions are not required for dephosphorylation by Cdc14, however, they could influence in vivo catalytic efficiency and therefore may determine the order of the different substrates getting dephosphorylated after the activation of the phosphatase.
Due to the low affinity and transient nature of the kinase/phosphatase-substrate interactions, the substrates are generally difficult to identify. The substrates of Cdc14 have been best characterized in budding yeast. The phosphatase dead mutants of yeast Cdc14 (C283S or D253A) have been declared as promising "substrate traps" and they were used to identify the potential in vivo substrates of Cdc14 in pull down and co-immunoprecipitation experiments (Bloom,2011). These substrate trap experiments could only identify a small subset of the potential Cdc14 targets detected in high-throughput phosphoproteomic screens (Bloom,2011; Eissler,2014; Powers,2017). Although many substrates of yeast Cdc14 have been validated in low-throughput experiments, the changes in the phosphorylation states of full proteins encompassing several phosphosites were mainly demonstrated by mass-dependent changes in migration within gels, therefore the dephosphorylation of individual phosphosites by Cdc14 has rarely been addressed. Nevertheless, analysis of the peptide hits of large-scale phosphoproteomic analyses of potential Cdc14 targets have confirmed the in vivo relevance of the (S)PxK/r motif (Eissler,2014; Powers,2017).
Fission yeast and human Cdc14 homologues showed similar residue preferences to budding yeast Cdc14 in peptide dephosphorylation assays, and the residues contributing to the active site are highly conserved, therefore the target motif was declared to be widely conserved among eukaryotes (Bremmer,2012).
Also, the structure of the complex between a phosphatase dead mutant of Cdc14 and an S-phosphorylated Swi6p peptide provides information on the catalytic mechanism of Cdc14 (5XW5). Furthermore, a complex structure of human CDC14B and a short substrate peptide is also available, even though the substrate peptide is too short for assessing the preference for positive residues in the positions following the (S)P (1OHE; Gray,2003).
Yeast Cdc14 forms a dimer, and dimerization is essential for its catalytic efficiency (5XW4; Kobayashi,2017). Furthermore, the non-catalytic, N-terminal domain of yeast Cdc14 (PF14671) has a binding pocket that recognizes the PxL docking motif (DOC_CDC14_PxL_1) on its substrates (6G86; 6G85), enhancing target recognition and dephosphorylation of both optimal and suboptimal targets (Kataria,2018). Although the hydrophobic pocket of Cdc14 that interacts with the PxL motif is conserved in human Cdc14 orthologues (Kataria,2018), its functional relevance is yet to be validated outside the phylogenetic group of budding yeasts.
o 10 selected references:


o 7 GO-Terms:
Biological Process:
Exit From Mitosis (also annotated in these classes: DOC_CDC14_PxL_1 )
Mitotic Cell Cycle Arrest (also annotated in these classes: DOC_CDC14_PxL_1 )
Cell Division (also annotated in these classes: DEG_SCF_TRCP1_1 DOC_CDC14_PxL_1 DOC_CYCLIN_D_Helix_1 DOC_CYCLIN_RevRxL_6 DOC_CYCLIN_RxL_1 DOC_CYCLIN_yClb1_LxF_4 DOC_CYCLIN_yClb3_PxF_3 DOC_CYCLIN_yCln2_LP_2 DOC_MIT_MIM_1 LIG_EABR_CEP55_1 MOD_NEK2_1 MOD_NEK2_2 MOD_Plk_1 )
Cellular Compartment:
Nucleolus (also annotated in these classes: DOC_CDC14_PxL_1 LIG_Mtr4_Air2_1 LIG_Mtr4_Trf4_1 LIG_Mtr4_Trf4_2 LIG_Nrd1CID_NIM_1 LIG_Trf4_IWRxY_1 MOD_Plk_2-3 )
Nucleus (also annotated in these classes: CLV_C14_Caspase3-7 CLV_Separin_Fungi CLV_Separin_Metazoa CLV_TASPASE1 DEG_APCC_DBOX_1 DEG_APCC_KENBOX_2 DEG_APCC_TPR_1 DEG_Cend_DCAF12_1 DEG_Cend_FEM1AC_1 DEG_Cend_FEM1B_2 DEG_Cend_KLHDC2_1 DEG_Cend_TRIM7_1 DEG_COP1 DEG_COP1_1 DEG_CRL4_CDT2_1 DEG_CRL4_CDT2_2 DEG_Kelch_Keap1_1 DEG_Kelch_Keap1_2 DEG_MDM2_SWIB_1 DEG_ODPH_VHL_1 DEG_SCF_COI1_1 DEG_SCF_FBW7_1 DEG_SCF_FBW7_2 DEG_SCF_FBXO31_1 DEG_SCF_SKP2-CKS1_1 DEG_SCF_TIR1_1 DEG_SCF_TRCP1_1 DEG_SIAH_1 DEG_SPOP_SBC_1 DOC_ANK_TNKS_1 DOC_CDC14_PxL_1 DOC_CKS1_1 DOC_CYCLIN_D_Helix_1 DOC_CYCLIN_RevRxL_6 DOC_CYCLIN_RxL_1 DOC_CYCLIN_yClb1_LxF_4 DOC_CYCLIN_yClb3_PxF_3 DOC_CYCLIN_yClb5_NLxxxL_5 DOC_CYCLIN_yCln2_LP_2 DOC_MAPK_DCC_7 DOC_MAPK_FxFP_2 DOC_MAPK_gen_1 DOC_MAPK_GRA24_9 DOC_MAPK_HePTP_8 DOC_MAPK_JIP1_4 DOC_MAPK_MEF2A_6 DOC_MAPK_NFAT4_5 DOC_MAPK_RevD_3 DOC_PIKK_1 DOC_PP1_MyPhoNE_1 DOC_PP1_RVXF_1 DOC_PP1_SILK_1 DOC_PP2A_B56_1 DOC_PP2A_KARD_1 DOC_PP2B_LxvP_1 DOC_PP2B_PxIxIT_1 DOC_PP4_FxxP_1 DOC_PP4_MxPP_1 DOC_USP7_MATH_1 DOC_USP7_MATH_2 DOC_USP7_UBL2_3 DOC_WW_Pin1_4 LIG_14-3-3_CanoR_1 LIG_14-3-3_ChREBP_3 LIG_14-3-3_CterR_2 LIG_ANK_PxLPxL_1 LIG_APCC_ABBA_1 LIG_APCC_Cbox_1 LIG_APCC_Cbox_2 LIG_ARL_BART_1 LIG_ARS2_EDGEI_1 LIG_BRCT_BRCA1_1 LIG_BRCT_BRCA1_2 LIG_BRCT_MDC1_1 LIG_CaM_1-14-15-16_REV_1 LIG_CaMK_CASK_1 LIG_CORNRBOX LIG_CSL_BTD_1 LIG_CtBP_PxDLS_1 LIG_CtBP_RRT_2 LIG_DCNL_PONY_1 LIG_EF_ALG2_ABM_1 LIG_EF_ALG2_ABM_2 LIG_EH1_1 LIG_FHA_1 LIG_FHA_2 LIG_GLEBS_BUB3_1 LIG_HCF-1_HBM_1 LIG_HOMEOBOX LIG_HP1_1 LIG_IRF7_LxLS_2 LIG_IRFs_LxIS_1 LIG_KEPE_1 LIG_KEPE_2 LIG_KEPE_3 LIG_LEDGF_IBM_1 LIG_LSD1_SNAG_1 LIG_MAD2 LIG_Menin_MBM1_1 LIG_MLH1_MIPbox_1 LIG_MSH2_SHIPbox_1 LIG_MTR4_AIM_1 LIG_Mtr4_Air2_1 LIG_Mtr4_Trf4_1 LIG_Mtr4_Trf4_2 LIG_MYND_1 LIG_MYND_2 LIG_MYND_3 LIG_NBox_RRM_1 LIG_NRBOX LIG_Nrd1CID_NIM_1 LIG_PALB2_WD40_1 LIG_PCNA_APIM_2 LIG_PCNA_PIPBox_1 LIG_PCNA_TLS_4 LIG_PCNA_yPIPBox_3 LIG_PTAP_UEV_1 LIG_RBL1_LxSxE_2 LIG_RB_LxCxE_1 LIG_RB_pABgroove_1 LIG_REV1ctd_RIR_1 LIG_RPA_C_Plants LIG_RPA_C_Vert LIG_RRM_PRI_1 LIG_Rrp6Rrp47_Mtr4_1 LIG_Sin3_1 LIG_Sin3_2 LIG_Sin3_3 LIG_SUFU_1 LIG_SUMO_SIM_anti_2 LIG_SUMO_SIM_par_1 LIG_TPR LIG_Trf4_IWRxY_1 LIG_TRFH_1 LIG_UBA3_1 LIG_ULM_U2AF65_1 LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 LIG_VCP_VIM_2 LIG_WD40_WDR5_VDV_1 LIG_WD40_WDR5_VDV_2 LIG_WD40_WDR5_WIN_1 LIG_WD40_WDR5_WIN_2 LIG_WD40_WDR5_WIN_3 LIG_WRPW_1 LIG_WRPW_2 LIG_WW_2 MOD_AAK1BIKe_LxxQxTG_1 MOD_CDK_SPK_2 MOD_CDK_SPxK_1 MOD_CDK_SPxxK_3 MOD_CK1_1 MOD_CK2_1 MOD_DYRK1A_RPxSP_1 MOD_GSK3_1 MOD_NEK2_1 MOD_NEK2_2 MOD_PIKK_1 MOD_PKA_1 MOD_PKA_2 MOD_PKB_1 MOD_PLK MOD_Plk_1 MOD_Plk_2-3 MOD_Plk_4 MOD_PRMT_GGRGG_1 MOD_ProDKin_1 MOD_SUMO_for_1 MOD_SUMO_rev_2 ELM:old_LIG_14-3-3_1 ELM:old_LIG_14-3-3_2 ELM:old_LIG_14-3-3_3 TRG_NES_CRM1_1 TRG_NESrev_CRM1_2 TRG_NLS_Bipartite_1 TRG_NLS_MonoCore_2 TRG_NLS_MonoExtC_3 TRG_NLS_MonoExtN_4 )
Cytosol (also annotated in these classes: CLV_C14_Caspase3-7 CLV_Separin_Fungi CLV_Separin_Metazoa DEG_APCC_DBOX_1 DEG_APCC_KENBOX_2 DEG_APCC_TPR_1 DEG_Cend_DCAF12_1 DEG_Cend_FEM1AC_1 DEG_Cend_FEM1B_2 DEG_Cend_KLHDC2_1 DEG_Cend_TRIM7_1 DEG_COP1_1 DEG_CRBN_cyclicCter_1 DEG_Kelch_actinfilin_1 DEG_Kelch_Keap1_1 DEG_Kelch_Keap1_2 DEG_Kelch_KLHL12_1 DEG_Kelch_KLHL3_1 DEG_MDM2_SWIB_1 DEG_Nend_Nbox_1 DEG_Nend_UBRbox_1 DEG_Nend_UBRbox_2 DEG_Nend_UBRbox_3 DEG_Nend_UBRbox_4 DEG_ODPH_VHL_1 DEG_SCF_FBW7_1 DEG_SCF_FBW7_2 DEG_SCF_FBXO31_1 DEG_SCF_SKP2-CKS1_1 DEG_SCF_TRCP1_1 DEG_SIAH_1 DOC_AGCK_PIF_1 DOC_AGCK_PIF_2 DOC_AGCK_PIF_3 DOC_ANK_TNKS_1 DOC_CDC14_PxL_1 DOC_CKS1_1 DOC_CYCLIN_D_Helix_1 DOC_CYCLIN_RevRxL_6 DOC_CYCLIN_RxL_1 DOC_CYCLIN_yClb1_LxF_4 DOC_CYCLIN_yClb3_PxF_3 DOC_CYCLIN_yCln2_LP_2 DOC_GSK3_Axin_1 DOC_MAPK_DCC_7 DOC_MAPK_FxFP_2 DOC_MAPK_gen_1 DOC_MAPK_GRA24_9 DOC_MAPK_HePTP_8 DOC_MAPK_JIP1_4 DOC_MAPK_MEF2A_6 DOC_MAPK_NFAT4_5 DOC_MAPK_RevD_3 DOC_MIT_MIM_1 DOC_PP1_MyPhoNE_1 DOC_PP1_RVXF_1 DOC_PP1_SILK_1 DOC_PP2A_B56_1 DOC_PP2A_KARD_1 DOC_PP2B_LxvP_1 DOC_PP2B_PxIxIT_1 DOC_PUB_PIM_1 DOC_RSK_DDVF_1 DOC_SPAK_OSR1_1 DOC_TBK1_STING_1 DOC_WD40_RPTOR_TOS_1 DOC_WW_Pin1_4 LIG_14-3-3_CanoR_1 LIG_14-3-3_ChREBP_3 LIG_14-3-3_CterR_2 LIG_ActinCP_CPI_1 LIG_ActinCP_TwfCPI_2 LIG_Actin_RPEL_3 LIG_Actin_WH2_1 LIG_Actin_WH2_2 LIG_ANK_PxLPxL_1 LIG_AP2alpha_1 LIG_AP2alpha_2 LIG_APCC_ABBA_1 LIG_APCC_Cbox_1 LIG_APCC_Cbox_2 LIG_AP_GAE_1 LIG_Arc_Nlobe_1 LIG_ARL_BART_1 LIG_BH_BH3_1 LIG_BIR_II_1 LIG_BIR_III_1 LIG_BIR_III_2 LIG_BIR_III_3 LIG_BIR_III_4 LIG_CaM_1-14-15-16_REV_1 LIG_CaM_1-26_7 LIG_CaM_1-5-10-14_3 LIG_CaM_1-8-14_4 LIG_CaM_1-8-9-10_5 LIG_CaM_1-8_REV_2 LIG_CaM_IQ_9 LIG_CaMK_CASK_1 LIG_CaM_NSCaTE_8 LIG_CAP-Gly_1 LIG_CAP-Gly_2 LIG_Clathr_ClatBox_1 LIG_Clathr_ClatBox_2 LIG_CNOT1_NIM_1 LIG_CSK_EPIYA_1 LIG_CtBP_PxDLS_1 LIG_deltaCOP1_diTrp_1 LIG_DLG_GKlike_1 LIG_Dynein_DLC8_1 LIG_EABR_CEP55_1 LIG_EF_ALG2_ABM_1 LIG_EF_ALG2_ABM_2 LIG_EH_1 LIG_eIF4E_1 LIG_eIF4E_2 LIG_EVH1_1 LIG_EVH1_2 LIG_EVH1_3 LIG_FAT_LD_1 LIG_FERM_MyoX_1 LIG_FZD_DVL_PDZ LIG_G3BP_FGDF_1 LIG_GBD_Chelix_1 LIG_GBD_WASP_1 LIG_GSK3_LRP6_1 LIG_GYF LIG_IBAR_NPY_1 LIG_IRF7_LxLS_2 LIG_IRFs_LxIS_1 LIG_KLC1_WD_1 LIG_KLC1_Yacidic_2 LIG_LIR_Apic_2 LIG_LIR_Gen_1 LIG_LIR_LC3C_4 LIG_LIR_Nem_3 LIG_LYPXL_L_2 LIG_LYPXL_S_1 LIG_LYPXL_yS_3 LIG_MYND_3 LIG_OCRL_FandH_1 LIG_PAM2_1 LIG_PAM2_2 LIG_PDZ_Class_1 LIG_PDZ_Class_2 LIG_PDZ_Class_3 LIG_PDZ_Wminus1_1 LIG_Pex14_1 LIG_Pex14_2 LIG_Pex14_3 LIG_Pex14_4 LIG_Pex3_1 LIG_PIP2_ANTH_1 LIG_PIP2_ENTH_1 LIG_PROFILIN_1 LIG_PTAP_UEV_1 LIG_PTB_Apo_2 LIG_PTB_Phospho_1 LIG_SH2_CRK LIG_SH2_GRB2like LIG_SH2_NCK_1 LIG_SH2_PTP2 LIG_SH2_SFK_2 LIG_SH2_SFK_CTail_3 LIG_SH2_STAT3 LIG_SH2_STAT5 LIG_SH2_STAT6 LIG_SH3_1 LIG_SH3_2 LIG_SH3_3 LIG_SH3_4 LIG_SH3_CIN85_PxpxPR_1 LIG_SH3_PxRPPK_7 LIG_SH3_PxxDY_5 LIG_SH3_PxxPPRxxK_8 LIG_SH3_PxxxRxxKP_6 LIG_SPRY_1 LIG_SUFU_1 LIG_SxIP_EBH_1 LIG_TPR LIG_TRAF2like_MATH_loPxQ_2 LIG_TRAF2like_MATH_shPxQ_1 LIG_TRAF3_MATH_PxP_3 LIG_TRAF4_MATH_1 LIG_TRAF6_MATH_1 LIG_TYR_ITAM LIG_TYR_ITIM LIG_TYR_ITSM LIG_UFM1_UFIM_1 LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 LIG_VCP_VIM_2 LIG_Vh1_VBS_1 LIG_WH1 LIG_WRC_WIRS_1 LIG_WW_1 LIG_WW_2 LIG_WW_3 MOD_AAK1BIKe_LxxQxTG_1 MOD_CAAXbox MOD_CDK_SPK_2 MOD_CDK_SPxK_1 MOD_CDK_SPxxK_3 MOD_CK1_1 MOD_CK2_1 MOD_DYRK1A_RPxSP_1 MOD_GSK3_1 MOD_LATS_1 MOD_LOK_YxT_1 MOD_NEK2_1 MOD_NEK2_2 MOD_NMyristoyl MOD_PIKK_1 MOD_PK_1 MOD_PKA_1 MOD_PKA_2 MOD_PKB_1 MOD_PLK MOD_Plk_1 MOD_Plk_2-3 MOD_Plk_4 MOD_PRMT_GGRGG_1 MOD_ProDKin_1 MOD_SPalmitoyl_2 MOD_SPalmitoyl_4 MOD_TYR_CSK MOD_TYR_DYR ELM:old_LIG_14-3-3_1 ELM:old_LIG_14-3-3_2 ELM:old_LIG_14-3-3_3 TRG_AP2beta_CARGO_1 TRG_Cilium_Arf4_1 TRG_Cilium_RVxP_2 TRG_DiLeu_BaEn_1 TRG_DiLeu_BaEn_2 TRG_DiLeu_BaEn_3 TRG_DiLeu_BaEn_4 TRG_DiLeu_BaLyEn_6 TRG_DiLeu_LyEn_5 TRG_ENDOCYTIC_2 TRG_ER_diArg_1 TRG_ER_diLys_1 TRG_ER_FFAT_1 TRG_ER_FFAT_2 TRG_Golgi_diPhe_1 TRG_LysEnd_APsAcLL_1 TRG_LysEnd_APsAcLL_3 TRG_LysEnd_GGAAcLL_1 TRG_LysEnd_GGAAcLL_2 TRG_NES_CRM1_1 TRG_NESrev_CRM1_2 TRG_PTS1 TRG_PTS2 )
Molecular Function:
Protein Phosphatase (also annotated in these classes: DOC_CDC14_PxL_1 DOC_PP4_FxxP_1 DOC_PP4_MxPP_1 )


o 48 Instances for MOD_CDC14_SPxK_1
(click table headers for sorting; Notes column: =Number of Switches, =Number of Interactions)
Acc., Gene-, NameStartEndSubsequenceLogic#Ev.OrganismNotes
Q12369 SFI1
SFI1_YEAST
892 895 TRGKPLRYSPRRTTRNMPSK TP 2 Saccharomyces cerevisiae S288c
1
Q12369 SFI1
SFI1_YEAST
882 885 ESTTGLNGSPTRGKPLRYSP TP 2 Saccharomyces cerevisiae S288c
1
Q12369 SFI1
SFI1_YEAST
855 858 SRARRAIPSPVKSSSVLDST TP 2 Saccharomyces cerevisiae S288c
1
Q12369 SFI1
SFI1_YEAST
801 804 LWKNRSDSSPKRRKDFNLKH TP 2 Saccharomyces cerevisiae S288c
1
Q9HDY1 ase1
ASE1_SCHPO
693 696 MKISPIRASPVKTIPSSPSP TP 1 Schizosaccharomyces pombe 972h-
1
Q9HDY1 ase1
ASE1_SCHPO
688 691 LPFSPMKISPIRASPVKTIP TP 1 Schizosaccharomyces pombe 972h-
1
Q9HDY1 ase1
ASE1_SCHPO
683 686 NSSQNLPFSPMKISPIRASP TP 1 Schizosaccharomyces pombe 972h-
1
Q9HDY1 ase1
ASE1_SCHPO
640 643 ASSKNVPLSPPKQRVVNEHA TP 1 Schizosaccharomyces pombe 972h-
1
Q1MTQ7 klp9
KLP9_SCHPO
611 614 VVSPIKPLSPSRRPPLTSLY TP 1 Schizosaccharomyces pombe 972h-
1
Q1MTQ7 klp9
KLP9_SCHPO
605 608 PSPKKKVVSPIKPLSPSRRP TP 1 Schizosaccharomyces pombe 972h-
1
Q1MTQ7 klp9
KLP9_SCHPO
598 601 DEENVPSPSPKKKVVSPIKP TP 1 Schizosaccharomyces pombe 972h-
1
P32380 SPC110
SP110_YEAST
36 39 NTTQTQVVSPTKVPNANNGD TP 3 Saccharomyces cerevisiae S288c
1
P38634 SIC1
SIC1_YEAST
76 79 TSPFNGLTSPQRSPFPKSSV TP 3 Saccharomyces cerevisiae S288c
1
P08153 SWI5
SWI5_YEAST
664 667 DGTSSVSSSPIKENINKDHN TP 3 Saccharomyces cerevisiae (Baker"s yeast)
1
P08153 SWI5
SWI5_YEAST
646 649 YENVVIKRSPRKRGRPRKDG TP 3 Saccharomyces cerevisiae (Baker"s yeast)
1
P08153 SWI5
SWI5_YEAST
522 525 EINTYTTNSPSKITRKLTTL TP 3 Saccharomyces cerevisiae (Baker"s yeast)
1
P53197 CDH1
CDH1_YEAST
436 439 AAVKAMAWSPHKRGVLATGG TP 3 Saccharomyces cerevisiae S288c
1
P53197 CDH1
CDH1_YEAST
239 242 PDSKQLLLSPGKQFRQIAKV TP 7 Saccharomyces cerevisiae S288c
4
P53197 CDH1
CDH1_YEAST
227 230 QSQFFDSMSPVRPDSKQLLL TP 3 Saccharomyces cerevisiae S288c
1
P53197 CDH1
CDH1_YEAST
42 45 SSSASLLSSPSRRSRPSTVY TP 7 Saccharomyces cerevisiae S288c
3
P53197 CDH1
CDH1_YEAST
16 19 FMNNTPSSSPLKGSESKRVS TP 5 Saccharomyces cerevisiae S288c
1
Q08981 ACM1
ACM1_YEAST
3 6 MISPSKKRTILSSKNINQKP TP 7 Saccharomyces cerevisiae S288c
4
Q12280 IQG1
IQG1_YEAST
404 407 FKYSPSHYSPMRRERMTEEQ TP 3 Saccharomyces cerevisiae S288c
1
Q12280 IQG1
IQG1_YEAST
354 357 GPTPSLEYSPIKNKSLSYYS TP 3 Saccharomyces cerevisiae S288c
1
Q12280 IQG1
IQG1_YEAST
7 10 MTAYSGSPSKPGNNNSYLNR TP 3 Saccharomyces cerevisiae S288c
1
Q08981 ACM1
ACM1_YEAST
31 34 VVKGNELRSPSKRRSQIDTD TP 10 Saccharomyces cerevisiae S288c
5
Q9UHB6 LIMA1
LIMA1_HUMAN
374 377 RASSLSESSPPKAMKKFQAP TP 4 Homo sapiens (Human)
1
P09959 SWI6
SWI6_YEAST
160 163 SDAHRELGSPLKKLKIDTSV TP 7 Saccharomyces cerevisiae S288c
1
Q08981 ACM1
ACM1_YEAST
48 51 DTDYALRRSPIKTIQISKAA TP 6 Saccharomyces cerevisiae S288c
1
P40316 PDS1
SECU_YEAST
71 74 YIQGGKEVSPTKRLHTHAQQ TP 3 Saccharomyces cerevisiae S288c
1
P14180 CHS2
CHS2_YEAST
100 103 RYAANLQESPKRAGEAVIHL TP 6 Saccharomyces cerevisiae S288c
1
P14180 CHS2
CHS2_YEAST
69 72 PSRAALRYSPDRRHRTQFYR TP 6 Saccharomyces cerevisiae S288c
1
P14180 CHS2
CHS2_YEAST
60 63 NVFQGLPASPSRAALRYSPD TP 6 Saccharomyces cerevisiae S288c
1
P14180 CHS2
CHS2_YEAST
14 17 FMVEPSNGSPNRRGASNLSK TP 6 Saccharomyces cerevisiae S288c
1
P40028 YEN1
YEN1_YEAST
679 682 VWKDVIEISPIKKSRTTNAE TP 5 Saccharomyces cerevisiae S288c
1
P40028 YEN1
YEN1_YEAST
655 658 NSQSVLDSSPGKRIRDLTQD TP 5 Saccharomyces cerevisiae S288c
1
P40028 YEN1
YEN1_YEAST
583 586 DEFLRKHTSPIKSIGKVGES TP 5 Saccharomyces cerevisiae S288c
1
P40028 YEN1
YEN1_YEAST
500 503 PNIPISSQSPLKRSNSPSRS TP 5 Saccharomyces cerevisiae S288c
1
P40028 YEN1
YEN1_YEAST
67 70 ARSRSRSRSPTRSPRDSDID TP 5 Saccharomyces cerevisiae S288c
1
P25558 BUD3
BUD3_YEAST
1549 1552 QKDEPIWVSPSKIDFADLSR TP 4 Saccharomyces cerevisiae S288c
1
Q12267 SMC4
SMC4_YEAST
128 131 RRLELLQLSPVKNSRVELQK TP 4 Saccharomyces cerevisiae S288c
1
P09119 CDC6
CDC6_YEAST
372 375 QVPLTPTTSPVKKSYPEPQG TP 2 Saccharomyces cerevisiae (Baker"s yeast)
1
P09119 CDC6
CDC6_YEAST
43 46 FTDVTPESSPEKLQFGSQSI TP 2 Saccharomyces cerevisiae (Baker"s yeast)
1
Q03898 FIN1
FIN1_YEAST
148 151 ARFKNGLMSPERIQQQQQQH TP 2 Saccharomyces cerevisiae S288c
1
Q03898 FIN1
FIN1_YEAST
117 120 ITNIIFPTSPTKLTFSNENK TP 2 Saccharomyces cerevisiae S288c
1
Q03898 FIN1
FIN1_YEAST
54 57 FLKPPMRISPNKTDGMKHSI TP 2 Saccharomyces cerevisiae S288c
1
Q03898 FIN1
FIN1_YEAST
36 39 NVFVRLSMSPLRTTSQKEFL TP 2 Saccharomyces cerevisiae S288c
1
Q08981 ACM1
ACM1_YEAST
102 105 PSQVKENLSPAKICPYERAF TP 2 Saccharomyces cerevisiae S288c
1
Please cite: ELM-the Eukaryotic Linear Motif resource-2024 update. (PMID:37962385)

ELM data can be downloaded & distributed for non-commercial use according to the ELM Software License Agreement

AltStyle によって変換されたページ (->オリジナル) /