ELM
The Eukaryotic Linear Motif resource for
Functional Sites in Proteins

LIG_CSK_EPIYA_1

Accession:
Functional site class:
EPIYA ligand motif for CSK-SH2
Functional site description:
The Csk SH2 domain binds an unusual motif EPIYA that is notable for being the subject of pathogen hijack. The motif was first found in certain bacterial effector proteins that are secreted into the host cytosol. The bacterial proteins usually have repeats of EPIYA motifs. The best described vertebrate cellular motif is found in Pragmin, a regulator of tyrosine kinase activity.
ELM Description:
The EPIYA motif is defined by the sequence of 13 instances with experimental evidence that include eukaryotic (Human and Rat) and bacterial (three species) proteins. The regular expression of this motif agrees with the motif sequences of cellular Pragmin and p140Cap proteins in mammals and repeating motifs in CagA, BepE, BepF and LspA1 effector proteins from H. pylori, B. henselae and H. ducreyi. EPIYA is considered to bind the CSK SH2 domain but, due to the unusal pattern for an SH2-interacting motif, other interactions should not be ruled out.

Positions -3, -2 and 0 (pTyr) are fixed, since no variation was found in the analyzed sequences. Position -1 was variable between the hydrophobic residues leucine and isoleucine, being the isoleucine conserved among CagA proteins (all repeats), Pragmin homologs and LspA1 (both repeats) proteins. Leucine at position -1 is conserved in p140Cap homologs and both BepD and BepE proteins. Position +1 has an alanine corresponding to the residue found in Pragmin and p140Cap homologues as well as repeats A, C and D from CagA protein as defined elsewhere (Higashi,2002). Repeat B is variable containing an alanine or threonine residue at position +1: both options (EPIYA or EPIYT) have been experimentally validated (Tsutsumi,2003; Selbach,2009). In addition to that, a glycine residue is present in the position +1 in BepD and BepE proteins. This defines the regular expression of the motif for Csk binding as EP[IL]Y[TAG]. Note that there is no solved structure for the complexed motif and therefore the motif pattern is likely to be revised in future when the interaction(s) are better understood.
Pattern: EP[IL]Y[TAG]
Pattern Probability: 0.0000025
Present in taxon: Vertebrata
Interaction Domain:
SH2 (PF00017) SH2 domain (Stochiometry: 1 : 1)
o See 20 Instances for LIG_CSK_EPIYA_1
Several pathogenic bacteria use SH2 domains (Pfam:PF00017) in host proteins to mediate binding of tyrosine-phosphorylated effector proteins (Backert,2005). For example, Helicobacter pylori CagA (Q9RF15) binds to the SH2 domain of C-terminal Src kinase (Csk) (with a KD<1120 nM; Tsutsumi,2003) as well as to both SH2 domains in SHP-2 (Higashi,2002); Tarp protein from Chlamydia trachomatis serovar D (O84462) binds to the SH2 domain of SHC1 (with a KD<200 nM; Mehlitz,2010) while the homologous Tarp protein from C. trachomatis serovar L2 binds to the SH2 domain of Nck (Mehlitz,2010); as a last example, AnkA protein from Anaplasma phagocytophilum (A0S0L6) binds to the SH2 domain of SHP-1 (IJdo,2007).

In all the mentioned cases the interaction is dependent on a tyrosine phosphorylation that occurs inside the host cell after the translocation of the bacterial protein. As in the case of CagA, the phosphotyrosines have been described as promiscuous binders of up to five partner proteins, as shown by a SILAC experiment using peptides of 15 amino acids long with tyrosine in the central position of different bacterial effectors like Bartonella henselae BepD (Q5QT02), BepE (Q5QT01) and BepF (Q5QT00), or Enteropathogenic Escherichia coli Tir protein (Selbach,2009). Nevertheless, the adjacent sequence to the tyrosine can give the specificity to certain proteins, which can explain the presence of different tyrosines able to be phosphorylated along the sequence of these proteins.

The specificity for the binding of the mentioned Csk protein, a non-receptor tyrosine kinase involved in cell growth, differentiation, migration and immune response (Roskoski R,2015), is defined by the positions -3 to +1 of the tyrosine. This linear motif – consensus EPIYA - is found in predicted intrinsically disordered polypeptide (IDP) and recognizes the SH2 domain in an unknown way (Nesic,2010), though it is dependent on the presence of a serine at the position 109 in rat Csk (P32577; Tsutsumi,2003; Safari,2011). At time of creating this entry, there is no structure of a solved EPIYA-SH2 complex.

This five residue-long motif also mediates the binding to CSK of the mammalian protein Pragmin (D3ZMK9; Safari,2011; also named as Sgk223 in human) which is a negative regulator of Src family kinases (SFK). This highly conserved motif is in a region of predicted IDP. (EPIYA-like motifs are also reported in the human SRC kinase signaling inhibitor 1 (SNIP or p140Cap; Q9C0H9; Repetto,2013) but it is unclear if the motifs are in an accessible structural context.). Moreover, the motif is conserved in homologous proteins of Pragmin and p140Cap along mammals.

The tyrosine in the EPIYA motif has been shown to be phosphorylated by Csk in the case of Pragmin, so a feed-forward regulatory loop is created (Senda,2016); Csk was also found to be able to phosphorylate EPIYA of LspA1 protein from Haemophilus ducreyi (Q7VLE8) in vitro (Dodd,2014). Finally, CagA is reported to be phosphorylated by members of the Src Family Kinases (SFK) such as c-Src (Selbach,2002) and Lyn (Selbach,2002; Stein,2002).

The interaction of Csk with the phosphorylated LIG_SH2_Csk motif can lead to different and opposing scenarios. The binding of the cytoplasm-localized phosphorylated Pragmin sequesters Csk far from the membrane, preventing the inactivation of c-Src. On the other hand, the protein CagA is initially located next to the intracellular membrane and brings together Csk with c-Src (Safari,2011), a state that allows Csk to phosphorylate c-Src in a conserved tyrosine at position 530 in the human homolog. This leads c-Src to adopt a closed conformation where its kinase activity is inhibited (Roskoski R,2004). In a celullar system where SFKs are inactivated, substrates of this kinase like the Fcγ receptor in the immunoreceptor tyrosine-based activation motif (ITAM) domain are not phosphorylated and phagocytosis is deregulated, a cellular state abused by H. ducreyi using its EPIYA-containing effector protein LspA1 (Dodd,2014). There is surely much more to discover about the mechanisms whereby pathogenic EPIYA hijack perturbs these tyrosine kinase signalling systems.
o 5 selected references:


o 13 GO-Terms:
Biological Process:
Phosphorylation (also annotated in these classes: MOD_LATS_1 MOD_Plk_1 MOD_Plk_2-3 MOD_Plk_4 )
Negative Regulation Of Kinase Activity (also annotated in class: )
Protein Amino Acid Phosphorylation (also annotated in these classes: DOC_AGCK_PIF_1 DOC_AGCK_PIF_2 DOC_AGCK_PIF_3 DOC_CYCLIN_RevRxL_6 DOC_CYCLIN_RxL_1 DOC_CYCLIN_yClb1_LxF_4 DOC_CYCLIN_yClb3_PxF_3 DOC_CYCLIN_yClb5_NLxxxL_5 DOC_MAPK_DCC_7 DOC_MAPK_GRA24_9 DOC_MAPK_HePTP_8 DOC_MAPK_JIP1_4 DOC_MAPK_MEF2A_6 DOC_MAPK_NFAT4_5 DOC_SPAK_OSR1_1 LIG_TYR_ITAM LIG_TYR_ITIM LIG_TYR_ITSM MOD_AAK1BIKe_LxxQxTG_1 MOD_DYRK1A_RPxSP_1 MOD_GSK3_1 MOD_LOK_YxT_1 MOD_ProDKin_1 MOD_TYR_CSK MOD_TYR_DYR )
Cell Migration (also annotated in these classes: LIG_CNOT1_NIM_1 LIG_NRP_CendR_1 )
Regulation Of Fc Receptor Mediated Stimulatory Signaling Pathway (also annotated in class: )
Innate Immune Response (also annotated in these classes: DEG_Cend_TRIM7_1 )
Adaptive Immune Response (also annotated in class: )
Negative Regulation Of Cell Proliferation (also annotated in class: )
Immune System Process (also annotated in class: )
Negative Regulation Of Phagocytosis (also annotated in class: )
Cellular Compartment:
Cytosol (also annotated in these classes: CLV_C14_Caspase3-7 CLV_Separin_Fungi CLV_Separin_Metazoa DEG_APCC_DBOX_1 DEG_APCC_KENBOX_2 DEG_APCC_TPR_1 DEG_Cend_DCAF12_1 DEG_Cend_FEM1AC_1 DEG_Cend_FEM1B_2 DEG_Cend_KLHDC2_1 DEG_Cend_TRIM7_1 DEG_COP1_1 DEG_CRBN_cyclicCter_1 DEG_Kelch_actinfilin_1 DEG_Kelch_Keap1_1 DEG_Kelch_Keap1_2 DEG_Kelch_KLHL12_1 DEG_Kelch_KLHL3_1 DEG_MDM2_SWIB_1 DEG_Nend_Nbox_1 DEG_Nend_UBRbox_1 DEG_Nend_UBRbox_2 DEG_Nend_UBRbox_3 DEG_Nend_UBRbox_4 DEG_ODPH_VHL_1 DEG_SCF_FBW7_1 DEG_SCF_FBW7_2 DEG_SCF_FBXO31_1 DEG_SCF_SKP2-CKS1_1 DEG_SCF_TRCP1_1 DEG_SIAH_1 DOC_AGCK_PIF_1 DOC_AGCK_PIF_2 DOC_AGCK_PIF_3 DOC_ANK_TNKS_1 DOC_CDC14_PxL_1 DOC_CKS1_1 DOC_CYCLIN_D_Helix_1 DOC_CYCLIN_RevRxL_6 DOC_CYCLIN_RxL_1 DOC_CYCLIN_yClb1_LxF_4 DOC_CYCLIN_yClb3_PxF_3 DOC_CYCLIN_yCln2_LP_2 DOC_GSK3_Axin_1 DOC_MAPK_DCC_7 DOC_MAPK_FxFP_2 DOC_MAPK_gen_1 DOC_MAPK_GRA24_9 DOC_MAPK_HePTP_8 DOC_MAPK_JIP1_4 DOC_MAPK_MEF2A_6 DOC_MAPK_NFAT4_5 DOC_MAPK_RevD_3 DOC_MIT_MIM_1 DOC_PP1_MyPhoNE_1 DOC_PP1_RVXF_1 DOC_PP1_SILK_1 DOC_PP2A_B56_1 DOC_PP2A_KARD_1 DOC_PP2B_LxvP_1 DOC_PP2B_PxIxIT_1 DOC_PUB_PIM_1 DOC_RSK_DDVF_1 DOC_SPAK_OSR1_1 DOC_TBK1_STING_1 DOC_WD40_RPTOR_TOS_1 DOC_WW_Pin1_4 LIG_14-3-3_CanoR_1 LIG_14-3-3_ChREBP_3 LIG_14-3-3_CterR_2 LIG_ActinCP_CPI_1 LIG_ActinCP_TwfCPI_2 LIG_Actin_RPEL_3 LIG_Actin_WH2_1 LIG_Actin_WH2_2 LIG_ANK_PxLPxL_1 LIG_AP2alpha_1 LIG_AP2alpha_2 LIG_APCC_ABBA_1 LIG_APCC_Cbox_1 LIG_APCC_Cbox_2 LIG_AP_GAE_1 LIG_Arc_Nlobe_1 LIG_ARL_BART_1 LIG_BH_BH3_1 LIG_BIR_II_1 LIG_BIR_III_1 LIG_BIR_III_2 LIG_BIR_III_3 LIG_BIR_III_4 LIG_CaM_1-14-15-16_REV_1 LIG_CaM_1-26_7 LIG_CaM_1-5-10-14_3 LIG_CaM_1-8-14_4 LIG_CaM_1-8-9-10_5 LIG_CaM_1-8_REV_2 LIG_CaM_IQ_9 LIG_CaMK_CASK_1 LIG_CaM_NSCaTE_8 LIG_CAP-Gly_1 LIG_CAP-Gly_2 LIG_Clathr_ClatBox_1 LIG_Clathr_ClatBox_2 LIG_CNOT1_NIM_1 LIG_CtBP_PxDLS_1 LIG_deltaCOP1_diTrp_1 LIG_DLG_GKlike_1 LIG_Dynein_DLC8_1 LIG_EABR_CEP55_1 LIG_EF_ALG2_ABM_1 LIG_EF_ALG2_ABM_2 LIG_EH_1 LIG_eIF4E_1 LIG_eIF4E_2 LIG_EVH1_1 LIG_EVH1_2 LIG_EVH1_3 LIG_FAT_LD_1 LIG_FERM_MyoX_1 LIG_FZD_DVL_PDZ LIG_G3BP_FGDF_1 LIG_GBD_Chelix_1 LIG_GBD_WASP_1 LIG_GSK3_LRP6_1 LIG_GYF LIG_IBAR_NPY_1 LIG_IRF7_LxLS_2 LIG_IRFs_LxIS_1 LIG_KLC1_WD_1 LIG_KLC1_Yacidic_2 LIG_LIR_Apic_2 LIG_LIR_Gen_1 LIG_LIR_LC3C_4 LIG_LIR_Nem_3 LIG_LYPXL_L_2 LIG_LYPXL_S_1 LIG_LYPXL_yS_3 LIG_MYND_3 LIG_OCRL_FandH_1 LIG_PAM2_1 LIG_PAM2_2 LIG_PDZ_Class_1 LIG_PDZ_Class_2 LIG_PDZ_Class_3 LIG_PDZ_Wminus1_1 LIG_Pex14_1 LIG_Pex14_2 LIG_Pex14_3 LIG_Pex14_4 LIG_Pex3_1 LIG_PIP2_ANTH_1 LIG_PIP2_ENTH_1 LIG_PROFILIN_1 LIG_PTAP_UEV_1 LIG_PTB_Apo_2 LIG_PTB_Phospho_1 LIG_SH2_CRK LIG_SH2_GRB2like LIG_SH2_NCK_1 LIG_SH2_PTP2 LIG_SH2_SFK_2 LIG_SH2_SFK_CTail_3 LIG_SH2_STAT3 LIG_SH2_STAT5 LIG_SH2_STAT6 LIG_SH3_1 LIG_SH3_2 LIG_SH3_3 LIG_SH3_4 LIG_SH3_CIN85_PxpxPR_1 LIG_SH3_PxRPPK_7 LIG_SH3_PxxDY_5 LIG_SH3_PxxPPRxxK_8 LIG_SH3_PxxxRxxKP_6 LIG_SPRY_1 LIG_SUFU_1 LIG_SxIP_EBH_1 LIG_TPR LIG_TRAF2like_MATH_loPxQ_2 LIG_TRAF2like_MATH_shPxQ_1 LIG_TRAF3_MATH_PxP_3 LIG_TRAF4_MATH_1 LIG_TRAF6_MATH_1 LIG_TYR_ITAM LIG_TYR_ITIM LIG_TYR_ITSM LIG_UFM1_UFIM_1 LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 LIG_VCP_VIM_2 LIG_Vh1_VBS_1 LIG_WH1 LIG_WRC_WIRS_1 LIG_WW_1 LIG_WW_2 LIG_WW_3 MOD_AAK1BIKe_LxxQxTG_1 MOD_CAAXbox MOD_CDC14_SPxK_1 MOD_CDK_SPK_2 MOD_CDK_SPxK_1 MOD_CDK_SPxxK_3 MOD_CK1_1 MOD_CK2_1 MOD_DYRK1A_RPxSP_1 MOD_GSK3_1 MOD_LATS_1 MOD_LOK_YxT_1 MOD_NEK2_1 MOD_NEK2_2 MOD_NMyristoyl MOD_PIKK_1 MOD_PK_1 MOD_PKA_1 MOD_PKA_2 MOD_PKB_1 MOD_PLK MOD_Plk_1 MOD_Plk_2-3 MOD_Plk_4 MOD_PRMT_GGRGG_1 MOD_ProDKin_1 MOD_SPalmitoyl_2 MOD_SPalmitoyl_4 MOD_TYR_CSK MOD_TYR_DYR ELM:old_LIG_14-3-3_1 ELM:old_LIG_14-3-3_2 ELM:old_LIG_14-3-3_3 TRG_AP2beta_CARGO_1 TRG_Cilium_Arf4_1 TRG_Cilium_RVxP_2 TRG_DiLeu_BaEn_1 TRG_DiLeu_BaEn_2 TRG_DiLeu_BaEn_3 TRG_DiLeu_BaEn_4 TRG_DiLeu_BaLyEn_6 TRG_DiLeu_LyEn_5 TRG_ENDOCYTIC_2 TRG_ER_diArg_1 TRG_ER_diLys_1 TRG_ER_FFAT_1 TRG_ER_FFAT_2 TRG_Golgi_diPhe_1 TRG_LysEnd_APsAcLL_1 TRG_LysEnd_APsAcLL_3 TRG_LysEnd_GGAAcLL_1 TRG_LysEnd_GGAAcLL_2 TRG_NES_CRM1_1 TRG_NESrev_CRM1_2 TRG_PTS1 TRG_PTS2 )
Internal Side Of Plasma Membrane (also annotated in these classes: DOC_AGCK_PIF_1 DOC_AGCK_PIF_2 DOC_AGCK_PIF_3 DOC_SPAK_OSR1_1 LIG_14-3-3_CanoR_1 LIG_14-3-3_CterR_2 LIG_CaMK_CASK_1 LIG_EVH1_1 LIG_EVH1_2 LIG_FERM_MyoX_1 LIG_GSK3_LRP6_1 LIG_PDZ_Class_1 LIG_PDZ_Class_2 LIG_PDZ_Class_3 LIG_PDZ_Wminus1_1 LIG_PTB_Apo_2 LIG_PTB_Phospho_1 LIG_SH2_NCK_1 LIG_SH2_SFK_2 LIG_SH2_SFK_CTail_3 LIG_SH3_CIN85_PxpxPR_1 LIG_TRAF2like_MATH_loPxQ_2 LIG_TRAF2like_MATH_shPxQ_1 LIG_TRAF3_MATH_PxP_3 LIG_TRAF6_MATH_1 MOD_AAK1BIKe_LxxQxTG_1 MOD_LOK_YxT_1 ELM:old_LIG_14-3-3_1 ELM:old_LIG_14-3-3_2 ELM:old_LIG_14-3-3_3 )
Molecular Function:
Protein Domain Specific Binding (also annotated in these classes: DEG_APCC_DBOX_1 DEG_APCC_KENBOX_2 DEG_Cend_DCAF12_1 DEG_Cend_FEM1AC_1 DEG_Cend_FEM1B_2 DEG_Cend_KLHDC2_1 DEG_Cend_TRIM7_1 DEG_Kelch_actinfilin_1 DEG_Kelch_Keap1_1 DEG_Kelch_Keap1_2 DEG_Kelch_KLHL3_1 DOC_MIT_MIM_1 LIG_14-3-3_CanoR_1 LIG_14-3-3_CterR_2 LIG_AP_GAE_1 LIG_ARS2_EDGEI_1 LIG_BRCT_BRCA1_1 LIG_BRCT_BRCA1_2 LIG_BRCT_MDC1_1 LIG_CAP-Gly_1 LIG_CSL_BTD_1 LIG_deltaCOP1_diTrp_1 LIG_EH_1 LIG_EVH1_1 LIG_EVH1_2 LIG_EVH1_3 LIG_FHA_1 LIG_FHA_2 LIG_G3BP_FGDF_1 LIG_MSH2_SHIPbox_1 LIG_MTR4_AIM_1 LIG_PAM2_1 LIG_PAM2_2 LIG_PDZ_Class_1 LIG_PDZ_Class_2 LIG_PDZ_Class_3 LIG_PDZ_Wminus1_1 LIG_PTB_Apo_2 LIG_PTB_Phospho_1 LIG_RRM_PRI_1 LIG_SH3_1 LIG_SH3_2 LIG_SH3_3 LIG_SH3_4 LIG_SH3_PxRPPK_7 LIG_SH3_PxxDY_5 LIG_SH3_PxxPPRxxK_8 LIG_SH3_PxxxRxxKP_6 LIG_Trf4_IWRxY_1 LIG_TRFH_1 LIG_ULM_U2AF65_1 LIG_WH1 ELM:old_LIG_14-3-3_1 ELM:old_LIG_14-3-3_2 ELM:old_LIG_14-3-3_3 )


o 20 Instances for LIG_CSK_EPIYA_1
(click table headers for sorting; Notes column: =Number of Switches, =Number of Interactions)
Acc., Gene-, NameStartEndSubsequenceLogic#Ev.OrganismNotes
G1UB82 lspA2
G1UB82_HAEDU
2595 2599 SRKLDEPEPIYGTINKSPEA TP 4 Haemophilus ducreyi 35000HP
Q5QT00 bepF
Q5QT00_BARHN
294 298 NTSSQDNEPLYATAAPSQSP TP 1 Bartonella henselae
Q5QT00 bepF
Q5QT00_BARHN
266 270 NTSSQDSEPLYATPLPQRRQ TP 1 Bartonella henselae
Q5QT00 bepF
Q5QT00_BARHN
238 242 NTSNQDSEPLYATPLPQRHQ TP 1 Bartonella henselae
Q5QT00 bepF
Q5QT00_BARHN
210 214 NTSSQDSEPLYATPLPQRHQ TP 1 Bartonella henselae
A0S0L6 AnkA
A0S0L6_ANAPH
1095 1099 TTFGPKEEPIYATVKKGPKK TP 5 Anaplasma phagocytophilum
G1UB82 lspA2
G1UB82_HAEDU
2671 2675 VRKTDEPEPIYGTINKSPEA TP 4 Haemophilus ducreyi 35000HP
P55980 cagA
CAGA_HELPY
915 919 GQVASPEEPIYTQVAKKVNA TP 2 Helicobacter pylori 26695
1
P55980 cagA
CAGA_HELPY
896 900 NGLKNSTEPIYAKVNKKKTG TP 1 Helicobacter pylori 26695
1
Q5QT01 bepE
Q5QT01_BARHN
34 38 RAPSPQPEPLYATVNKRPPR TP 3 Bartonella henselae
1
Q5QT02 bepD
Q5QT02_BARHN
208 212 RAPSPQAEPLYAQVNKPPRE TP 1 Bartonella henselae
1
Q7VLE8 lspA1
Q7VLE8_HAEDU
2542 2546 VRKTDEPEPIYGTINKSPEA TP 5 Haemophilus ducreyi 35000HP
1
Q7VLE8 lspA1
Q7VLE8_HAEDU
2466 2470 SRKLDEPEPIYGTINKSPEA TP 5 Haemophilus ducreyi 35000HP
1
Q9C0H9-5 SRCIN1
SRCN1_HUMAN
261 265 IIKIYRKEPLYAAFPGSHLT TP 4 Homo sapiens (Human)
1
D3ZMK9 Pragmin
D3ZMK9_RAT
388 392 PREAVQPEPIYAESAKRKKA TP 5 Rattus norvegicus (Norway rat)
1
Q9RF15 cagA
Q9RF15_HELPX
1030 1034 VGRSVSPEPIYATIDDLGGP TP 2 Helicobacter pylori
1
Q9RF15 cagA
Q9RF15_HELPX
996 1000 VGRSVSPEPIYATIDDLGGP TP 2 Helicobacter pylori
1
Q9RF15 cagA
Q9RF15_HELPX
962 966 VGRSVSPEPIYATIDDLGGP TP 2 Helicobacter pylori
1
Q9RF15 cagA
Q9RF15_HELPX
909 913 GQVASPEEPIYAQVAKKVNA TP 2 Helicobacter pylori
1
Q9RF15 cagA
Q9RF15_HELPX
890 894 NNNGLENEPIYAKVNKKKTG TP 2 Helicobacter pylori
1
Please cite: ELM-the Eukaryotic Linear Motif resource-2024 update. (PMID:37962385)

ELM data can be downloaded & distributed for non-commercial use according to the ELM Software License Agreement

AltStyle によって変換されたページ (->オリジナル) /