ELM
The Eukaryotic Linear Motif resource for
Functional Sites in Proteins

DEG_SCF_COI1_1

Accession:
Functional site class:
Phytohormone-dependent SCF-LRR-binding degrons
Functional site description:
Several plant-specific degrons mediate phytohormone-dependent binding of regulatory proteins to F-box proteins that function as substrate recognition subunits of the SCF (Skp1-Cul1-Rbx1-Fbox protein) E3 ubiquitin ligase, which targets its substrates for subsequent proteasomal degradation. An auxin-dependent degron motif is present in Aux/IAA proteins and mediates binding of these transcriptional repressors to TIR1/AFB F-box proteins. Similarly, a jasmonate-dependent degron motif is present in JAZ proteins and mediates binding of these transcriptional repressors to the COI1 F-box protein. Binding of these degrons to the leucine-rich repeats (LRRs) of their respective F-box proteins is hormone-dependent, as binding of a hormone molecule to the F-box protein results in the formation of a composite binding site for the substrate degron sequence. The resulting tripartite complex allows high-affinity binding of the substrate protein to the F-box protein.
ELMs with same func. site: DEG_SCF_COI1_1 DEG_SCF_TIR1_1
ELM Description:
Binding of the JAZ degron to the jasmonate-bound leucine-rich repeats (LRRs) of COI1 involves an N-terminal motif region that binds in an extended conformation on top of the binding pocket for isoleucine-conjugated jasmonic acid (JA-Ile) on COI1. In addition, the C-terminal part of the peptide forms an alpha-helix that binds on top of the LRR domain, adjacent to the hormone-binding site (3OGL) (Sheard,2010). The C-terminal part is highly conserved among the JAZ proteins. Evidence indicates that this helix mediates low-affinity docking to COI1 and functions cooperatively with the N-terminal part of the degron to confer high-affinity binding of COI1, the substrate JAZ protein and the hormone (3OGK) (Sheard,2010). Hydrophobic contacts between the helix and COI1 are provided by the invariant leucine in position 7 of the motif, the invariant phenylalanine in position 10, and the hydrophobic residue, predominantly leucine or phenylalanine, in position 11. Conserved basic residues surrounding these hydrophobic sites provide additional contacts for this motif region. The N-terminal region of the degron peptide is less conserved, which might allow the different JAZ proteins to have distinct responsiveness to JA-Ile (Sheard,2010). This part of the motif confers hormone-dependent binding of the degron. The two first residues are mostly hydrophobic and directly bind to JA-Ile. Two highly conserved basic residues in positions 3 and 4 also play an important role in motif function. The residue in position 3 directly binds to a loop on COI1 while the residue in position 4 inserts deeply into the central cavity of the COI1 LRR domain, where it interacts with the hormone (Sheard,2010). The JA-Ile molecule inserted in the cavity at the degron-COI1 interface stabilizes the interaction between JAZ and COI1 and increases the affinity by interacting with both binding partners. Some JAZ proteins show slight deviations from this canonical degron definition (TIFY5A/B), which might indicate an altered specificity.
Pattern: ..[RK][RK].SL..F[FLM].[RK]R[HRK].[RK].
Pattern Probability: 3.626e-11
Present in taxon: Viridiplantae
Interaction Domain:
LRR (SM00370) Leucine-rich repeats, outliers (Stochiometry: 1 : 1)
PDB Structure: 3OGL
o See 9 Instances for DEG_SCF_COI1_1
Phytohormones are a diverse set of endogenous chemicals that control many different aspects of plant development and growth. Some well-studied plant hormones include auxins, ethylene, gibberellins, jasmonates and abscisic acid. Their activity depends on hormone synthesis, transport, conjugation to other substances, and degradation, as well as extensive cross talk between the different hormones (Garay-Arroyo,2012).
The auxin family of plant hormones, with indole-3-acetic acid (IAA) as the most important member, plays a key role in plant development and growth by acting as a signal for cell division, elongation and differentiation. This hormone regulates a wide variety of processes, including embryogenesis, root formation, apical dominance and tropic responses to light and gravity (Mockaitis,2008, Hayashi,2012). Local auxin abundance is determined by the coordinated control of regulatory pathways involved in the metabolism and transport of auxin. Responses to auxin are mediated by a variety of signalling mechanisms that control the expression of specific sets of genes or trigger transcription-independent responses. Genes transcriptionally activated by auxin include GH3 genes involved in synthesis of inactive IAA-amino acid conjugates, the Small Auxin-Up RNA (SAUR) genes of unknown function, and the Aux/IAA genes. Important mediators of the transcriptional response to auxin are the auxin response factor (ARF) transcription factors that directly bind to the promoters of auxin-responsive genes to regulate their expression. The auxin-responsiveness of the ARFs depends on the Aux/IAA proteins, transcriptional repressors that heterodimerize with ARF proteins, thereby inactivating ARF activity and blocking transcription of auxin-responsive genes. In the presence of auxin, the Aux/IAA repressors are targeted for ubiquitin-dependent proteasomal degradation by the SCF (Skp1-Cul1-Rbx1-Fbox protein) E3 ubiquitin ligase. The auxin-dependent degradation of the Aux/IAAs relieves inhibition of ARF activity and results in expression of auxin-responsive genes. As these genes also include the Aux/IAA-encoding genes, this mechanism provides a negative feedback loop for control of auxin signalling (Mockaitis,2008, Hayashi,2012).
Degradation of the Aux/IAA proteins by the SCF complex depends on the Transport Inhibitor Response 1 (TIR1) and Auxin signalling F-Box (AFB) proteins that function as auxin receptors and substrate recognition subunits of the SCF. The Aux/IAAs are recruited to the SCF by a TIR1/AFB F-box protein, subsequently ubiquitylated by the SCF, and thereby marked for degradation by the proteasome. Binding to the F-box subunit is mediated by the auxin-dependent SCF-TIR1-binding degron motif. Auxin promotes an increase of Aux/IAA degradation by enhancing the interaction between the motif and TIR1/AFB (Parry,2006, Calderon-Villalobos,2010). The components of this transcriptional auxin response are conserved in plants, although some Aux/IAA proteins appear to lack a functional TIR1-binding degron motif (Dreher,2006, Paponov,2009).
The oxylipin jasmonic acid (JA) and its metabolites constitute a family of plant hormones collectively referred to as jasmonates. Production of the major bioactive isoform of the hormone, N-[(3R,7S)-(+)-7-iso-Jasmonoyl]-(S)-isoleucine (JA-Ile), requires conjugation of the JA prohormone to isoleucine (Fonseca,2009). Jasmonates play an important role in normal plant development and growth processes, including root growth, including inhibition of root growth and seed germination and stimulation of senescence. In addition, they mediate defensive responses to biotic and abiotic stress signals such as pathogenic infection, wounding and UV irradiation (Wasternack,2007). Jasmonate-induced responses depend on signalling mechanisms that control the expression of specific sets of genes. An important mediator of the transcriptional response to jasmonates is the transcription factor MYC2/RAP1, which directly binds to the promoters of JA-responsive genes. Genes regulated by MYC2 include wound-responsive genes and genes involved in redox signalling (Dombrecht,2007). The JA-responsiveness of MYC2 and the related transcription factors MYC3 and MYC4 depends on the JAZ/TIFY proteins that function as transcriptional repressors and inhibit positive regulation of gene expression by MYC2. In the absence of bioactive jasmonates, the JAZ proteins bind to MYC2 through their C-terminal region. The inhibitory function of JAZ proteins depends on their ZIM domain that binds to the adaptor protein NINJA, which in turn recruits the general corepressor TOPLESS (Pauwels,2011, Kombrink,2012). In the presence of active JA, the JAZ proteins are targeted for ubiquitin-dependent proteasomal degradation by the SCF (Skp1-Cul1-Rbx1-Fbox protein) E3 ubiquitin ligase. The JA-dependent degradation of the JAZ proteins relieves inhibition of MYC2 activity and results in expression of JA-responsive genes. As these genes also include the JAZ-encoding genes, this mechanism provides a negative feedback loop for control of jasmonate signalling (Fonseca,2009).
Degradation of the JAZ proteins by the SCF complex depends on the Coronatine-insensitive protein 1 (COI1), which functions as a JA receptor and substrate recognition subunit of the SCF. The JAZ proteins are recruited to the SCF by the COI1 F-box protein, subsequently ubiquitylated by the SCF, and thereby marked for degradation by the proteasome. Binding to the F-box subunit is mediated by the JA-dependent SCF-COI1-binding degron motif located in the Jas domain, which mediates binding to MYC2. JA-Ile promotes an increase of JAZ degradation by enhancing the interaction between the motif and COI1 (Gfeller,2010, Kombrink,2012). The components of this transcriptional JA response are conserved in higher plants, although some JAZ proteins appear to lack a functional COI1-binding degron motif (Pauwels,2011, Shyu,2012).
o 6 selected references:


o 7 GO-Terms:
Biological Process:
Regulation Of Protein Ubiquitination (also annotated in these classes: DEG_Kelch_actinfilin_1 DEG_Kelch_Keap1_1 DEG_Kelch_Keap1_2 DEG_SCF_FBW7_1 DEG_SCF_FBW7_2 DEG_SCF_FBXO31_1 DEG_SCF_TIR1_1 DEG_SCF_TRCP1_1 DEG_SIAH_1 )
Ubiquitin-Dependent Protein Catabolism (also annotated in these classes: DEG_CRL4_CDT2_1 DEG_CRL4_CDT2_2 DEG_Kelch_actinfilin_1 DEG_Kelch_Keap1_1 DEG_Kelch_Keap1_2 DEG_Kelch_KLHL12_1 DEG_Kelch_KLHL3_1 DEG_SCF_FBW7_1 DEG_SCF_FBW7_2 DEG_SCF_FBXO31_1 DEG_SCF_SKP2-CKS1_1 DEG_SCF_TIR1_1 DEG_SCF_TRCP1_1 DEG_SIAH_1 )
Jasmonic Acid Mediated Signaling Pathway (also annotated in class: )
Cellular Compartment:
Nucleus (also annotated in these classes: CLV_C14_Caspase3-7 CLV_Separin_Fungi CLV_Separin_Metazoa CLV_TASPASE1 DEG_APCC_DBOX_1 DEG_APCC_KENBOX_2 DEG_APCC_TPR_1 DEG_Cend_DCAF12_1 DEG_Cend_FEM1AC_1 DEG_Cend_FEM1B_2 DEG_Cend_KLHDC2_1 DEG_Cend_TRIM7_1 DEG_COP1 DEG_COP1_1 DEG_CRL4_CDT2_1 DEG_CRL4_CDT2_2 DEG_Kelch_Keap1_1 DEG_Kelch_Keap1_2 DEG_MDM2_SWIB_1 DEG_ODPH_VHL_1 DEG_SCF_FBW7_1 DEG_SCF_FBW7_2 DEG_SCF_FBXO31_1 DEG_SCF_SKP2-CKS1_1 DEG_SCF_TIR1_1 DEG_SCF_TRCP1_1 DEG_SIAH_1 DEG_SPOP_SBC_1 DOC_ANK_TNKS_1 DOC_CDC14_PxL_1 DOC_CKS1_1 DOC_CYCLIN_D_Helix_1 DOC_CYCLIN_RevRxL_6 DOC_CYCLIN_RxL_1 DOC_CYCLIN_yClb1_LxF_4 DOC_CYCLIN_yClb3_PxF_3 DOC_CYCLIN_yClb5_NLxxxL_5 DOC_CYCLIN_yCln2_LP_2 DOC_MAPK_DCC_7 DOC_MAPK_FxFP_2 DOC_MAPK_gen_1 DOC_MAPK_GRA24_9 DOC_MAPK_HePTP_8 DOC_MAPK_JIP1_4 DOC_MAPK_MEF2A_6 DOC_MAPK_NFAT4_5 DOC_MAPK_RevD_3 DOC_PIKK_1 DOC_PP1_MyPhoNE_1 DOC_PP1_RVXF_1 DOC_PP1_SILK_1 DOC_PP2A_B56_1 DOC_PP2A_KARD_1 DOC_PP2B_LxvP_1 DOC_PP2B_PxIxIT_1 DOC_PP4_FxxP_1 DOC_PP4_MxPP_1 DOC_USP7_MATH_1 DOC_USP7_MATH_2 DOC_USP7_UBL2_3 DOC_WW_Pin1_4 LIG_14-3-3_CanoR_1 LIG_14-3-3_ChREBP_3 LIG_14-3-3_CterR_2 LIG_ANK_PxLPxL_1 LIG_APCC_ABBA_1 LIG_APCC_Cbox_1 LIG_APCC_Cbox_2 LIG_ARL_BART_1 LIG_ARS2_EDGEI_1 LIG_BRCT_BRCA1_1 LIG_BRCT_BRCA1_2 LIG_BRCT_MDC1_1 LIG_CaM_1-14-15-16_REV_1 LIG_CaMK_CASK_1 LIG_CORNRBOX LIG_CSL_BTD_1 LIG_CtBP_PxDLS_1 LIG_CtBP_RRT_2 LIG_DCNL_PONY_1 LIG_EF_ALG2_ABM_1 LIG_EF_ALG2_ABM_2 LIG_EH1_1 LIG_FHA_1 LIG_FHA_2 LIG_GLEBS_BUB3_1 LIG_HCF-1_HBM_1 LIG_HOMEOBOX LIG_HP1_1 LIG_IRF7_LxLS_2 LIG_IRFs_LxIS_1 LIG_KEPE_1 LIG_KEPE_2 LIG_KEPE_3 LIG_LEDGF_IBM_1 LIG_LSD1_SNAG_1 LIG_MAD2 LIG_Menin_MBM1_1 LIG_MLH1_MIPbox_1 LIG_MSH2_SHIPbox_1 LIG_MTR4_AIM_1 LIG_Mtr4_Air2_1 LIG_Mtr4_Trf4_1 LIG_Mtr4_Trf4_2 LIG_MYND_1 LIG_MYND_2 LIG_MYND_3 LIG_NBox_RRM_1 LIG_NRBOX LIG_Nrd1CID_NIM_1 LIG_PALB2_WD40_1 LIG_PCNA_APIM_2 LIG_PCNA_PIPBox_1 LIG_PCNA_TLS_4 LIG_PCNA_yPIPBox_3 LIG_PTAP_UEV_1 LIG_RBL1_LxSxE_2 LIG_RB_LxCxE_1 LIG_RB_pABgroove_1 LIG_REV1ctd_RIR_1 LIG_RPA_C_Plants LIG_RPA_C_Vert LIG_RRM_PRI_1 LIG_Rrp6Rrp47_Mtr4_1 LIG_Sin3_1 LIG_Sin3_2 LIG_Sin3_3 LIG_SUFU_1 LIG_SUMO_SIM_anti_2 LIG_SUMO_SIM_par_1 LIG_TPR LIG_Trf4_IWRxY_1 LIG_TRFH_1 LIG_UBA3_1 LIG_ULM_U2AF65_1 LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 LIG_VCP_VIM_2 LIG_WD40_WDR5_VDV_1 LIG_WD40_WDR5_VDV_2 LIG_WD40_WDR5_WIN_1 LIG_WD40_WDR5_WIN_2 LIG_WD40_WDR5_WIN_3 LIG_WRPW_1 LIG_WRPW_2 LIG_WW_2 MOD_AAK1BIKe_LxxQxTG_1 MOD_CDC14_SPxK_1 MOD_CDK_SPK_2 MOD_CDK_SPxK_1 MOD_CDK_SPxxK_3 MOD_CK1_1 MOD_CK2_1 MOD_DYRK1A_RPxSP_1 MOD_GSK3_1 MOD_NEK2_1 MOD_NEK2_2 MOD_PIKK_1 MOD_PKA_1 MOD_PKA_2 MOD_PKB_1 MOD_PLK MOD_Plk_1 MOD_Plk_2-3 MOD_Plk_4 MOD_PRMT_GGRGG_1 MOD_ProDKin_1 MOD_SUMO_for_1 MOD_SUMO_rev_2 ELM:old_LIG_14-3-3_1 ELM:old_LIG_14-3-3_2 ELM:old_LIG_14-3-3_3 TRG_NES_CRM1_1 TRG_NESrev_CRM1_2 TRG_NLS_Bipartite_1 TRG_NLS_MonoCore_2 TRG_NLS_MonoExtC_3 TRG_NLS_MonoExtN_4 )
Scf Ubiquitin Ligase Complex (also annotated in these classes: DEG_SCF_FBXO31_1 DEG_SCF_SKP2-CKS1_1 DEG_SCF_TIR1_1 MOD_Plk_2-3 MOD_Plk_4 )
Molecular Function:
Ubiquitin-Protein Ligase Activity (also annotated in these classes: DEG_APCC_TPR_1 DEG_Cend_DCAF12_1 DEG_Cend_FEM1AC_1 DEG_Cend_FEM1B_2 DEG_Cend_KLHDC2_1 DEG_Cend_TRIM7_1 DEG_CRL4_CDT2_1 DEG_CRL4_CDT2_2 DEG_Kelch_Keap1_1 DEG_Kelch_Keap1_2 DEG_Nend_Nbox_1 DEG_Nend_UBRbox_1 DEG_Nend_UBRbox_2 DEG_Nend_UBRbox_3 DEG_Nend_UBRbox_4 DEG_SCF_FBW7_1 DEG_SCF_FBW7_2 DEG_SCF_FBXO31_1 DEG_SCF_SKP2-CKS1_1 DEG_SCF_TIR1_1 DEG_SCF_TRCP1_1 DEG_SIAH_1 LIG_APCC_Cbox_1 LIG_APCC_Cbox_2 )
Protein Binding (also annotated in these classes: CLV_C14_Caspase3-7 CLV_Separin_Fungi CLV_Separin_Metazoa DEG_APCC_TPR_1 DEG_Cend_DCAF12_1 DEG_Cend_FEM1AC_1 DEG_Cend_FEM1B_2 DEG_Cend_KLHDC2_1 DEG_Cend_TRIM7_1 DEG_COP1 DEG_COP1_1 DEG_CRBN_cyclicCter_1 DEG_CRL4_CDT2_1 DEG_CRL4_CDT2_2 DEG_ODPH_VHL_1 DEG_SCF_FBW7_1 DEG_SCF_FBW7_2 DEG_SCF_FBXO31_1 DEG_SCF_SKP2-CKS1_1 DEG_SCF_TIR1_1 DEG_SCF_TRCP1_1 DEG_SIAH_1 DOC_AGCK_PIF_1 DOC_AGCK_PIF_2 DOC_AGCK_PIF_3 DOC_ANK_TNKS_1 DOC_CKS1_1 DOC_MAPK_DCC_7 DOC_MAPK_GRA24_9 DOC_MAPK_HePTP_8 DOC_MAPK_JIP1_4 DOC_MAPK_MEF2A_6 DOC_MAPK_NFAT4_5 DOC_PIKK_1 DOC_PP1_MyPhoNE_1 DOC_PP1_RVXF_1 DOC_PP1_SILK_1 DOC_PP2A_B56_1 DOC_PP2A_KARD_1 DOC_PP2B_LxvP_1 DOC_RSK_DDVF_1 DOC_SPAK_OSR1_1 DOC_WD40_RPTOR_TOS_1 LIG_14-3-3_ChREBP_3 LIG_ActinCP_CPI_1 LIG_ActinCP_TwfCPI_2 LIG_ANK_PxLPxL_1 LIG_AP2alpha_1 LIG_AP2alpha_2 LIG_APCC_Cbox_1 LIG_APCC_Cbox_2 LIG_AP_GAE_1 LIG_ARL_BART_1 LIG_ARS2_EDGEI_1 LIG_BH_BH3_1 LIG_BIR_II_1 LIG_BIR_III_1 LIG_BIR_III_2 LIG_BIR_III_3 LIG_BIR_III_4 LIG_CaM_IQ_9 LIG_CaMK_CASK_1 LIG_CNOT1_NIM_1 LIG_deltaCOP1_diTrp_1 LIG_DLG_GKlike_1 LIG_Dynein_DLC8_1 LIG_EABR_CEP55_1 LIG_EF_ALG2_ABM_1 LIG_EF_ALG2_ABM_2 LIG_EH_1 LIG_eIF4E_1 LIG_eIF4E_2 LIG_EVH1_1 LIG_EVH1_2 LIG_FAT_LD_1 LIG_FHA_1 LIG_FHA_2 LIG_FXI_DFP_1 LIG_GLEBS_BUB3_1 LIG_HCF-1_HBM_1 LIG_IBAR_NPY_1 LIG_Integrin_isoDGR_2 LIG_IRF7_LxLS_2 LIG_IRFs_LxIS_1 LIG_KLC1_Yacidic_2 LIG_LEDGF_IBM_1 LIG_LIR_Apic_2 LIG_LIR_Gen_1 LIG_LIR_LC3C_4 LIG_LIR_Nem_3 LIG_LRP6_Inhibitor_1 LIG_LSD1_SNAG_1 LIG_LYPXL_L_2 LIG_LYPXL_S_1 LIG_LYPXL_SIV_4 LIG_LYPXL_yS_3 LIG_MAD2 LIG_Menin_MBM1_1 LIG_MLH1_MIPbox_1 LIG_MSH2_SHIPbox_1 LIG_MTR4_AIM_1 LIG_Mtr4_Air2_1 LIG_Mtr4_Trf4_1 LIG_Mtr4_Trf4_2 LIG_MYND_3 LIG_Nrd1CID_NIM_1 LIG_NRP_CendR_1 LIG_OCRL_FandH_1 LIG_PALB2_WD40_1 LIG_PDZ_Class_1 LIG_PDZ_Class_2 LIG_PDZ_Class_3 LIG_PDZ_Wminus1_1 LIG_Pex14_1 LIG_Pex14_2 LIG_Pex3_1 LIG_PTB_Apo_2 LIG_PTB_Phospho_1 LIG_RBL1_LxSxE_2 LIG_RB_pABgroove_1 LIG_REV1ctd_RIR_1 LIG_RPA_C_Plants LIG_RPA_C_Vert LIG_RuBisCO_WRxxL_1 LIG_SH2_CRK LIG_SH2_GRB2like LIG_SH2_NCK_1 LIG_SH2_SFK_2 LIG_SH2_SFK_CTail_3 LIG_SH2_STAP1 LIG_SH3_1 LIG_SH3_2 LIG_SH3_3 LIG_SH3_4 LIG_SH3_CIN85_PxpxPR_1 LIG_SH3_PxxDY_5 LIG_SPRY_1 LIG_SUFU_1 LIG_TRAF2like_MATH_loPxQ_2 LIG_TRAF2like_MATH_shPxQ_1 LIG_TRAF3_MATH_PxP_3 LIG_TRAF4_MATH_1 LIG_TRAF6_MATH_1 LIG_Trf4_IWRxY_1 LIG_UFM1_UFIM_1 LIG_VCP_SHPBox_1 LIG_VCP_VBM_3 LIG_VCP_VIM_2 LIG_Vh1_VBS_1 LIG_WD40_WDR5_VDV_1 LIG_WD40_WDR5_VDV_2 LIG_WD40_WDR5_WIN_1 LIG_WD40_WDR5_WIN_2 LIG_WD40_WDR5_WIN_3 LIG_WH1 LIG_WRC_WIRS_1 LIG_WW_1 LIG_WW_2 LIG_WW_3 MOD_Plk_2-3 MOD_Plk_4 MOD_PRMT_GGRGG_1 TRG_AP2beta_CARGO_1 TRG_Cilium_Arf4_1 TRG_Cilium_RVxP_2 TRG_DiLeu_BaEn_1 TRG_DiLeu_BaEn_2 TRG_DiLeu_BaEn_3 TRG_DiLeu_BaEn_4 TRG_DiLeu_BaLyEn_6 TRG_DiLeu_LyEn_5 TRG_ER_diLys_1 TRG_ER_FFAT_1 TRG_ER_FFAT_2 TRG_Golgi_diPhe_1 TRG_LysEnd_APsAcLL_1 TRG_LysEnd_APsAcLL_3 TRG_LysEnd_GGAAcLL_1 TRG_LysEnd_GGAAcLL_2 TRG_NES_CRM1_1 TRG_NESrev_CRM1_2 TRG_NLS_Bipartite_1 TRG_NLS_MonoCore_2 TRG_NLS_MonoExtC_3 TRG_NLS_MonoExtN_4 )


o 9 Instances for DEG_SCF_COI1_1
(click table headers for sorting; Notes column: =Number of Switches, =Number of Interactions)
Acc., Gene-, NameStartEndSubsequenceLogic#Ev.OrganismNotes
Q9LDU5 TIFY11A
TI11A_ARATH
182 199 RIARRASLHRFFAKRKDRAV U 1 Arabidopsis thaliana (Thale cress)
Q93ZM9 TIFY9
TIF9_ARATH
169 186 PIARRKSLQRFLEKRKERLV U 1 Arabidopsis thaliana (Thale cress)
Q9C9E3 TIFY11B
TI11B_ARATH
186 203 RIARRASLHRFFAKRKDRAV U 1 Arabidopsis thaliana (Thale cress)
B2XVS2 Jasmonate ZIM-domain protein 3
B2XVS2_SOLLC
251 268 PQARKASLARFLEKRKERVM TP 3 Solanum lycopersicum (Tomato)
1
A7XXZ0 LOC100134911
A7XXZ0_SOLLC
199 216 PIARRNSLTRFLEKRKDRVT TP 5 Solanum lycopersicum (Tomato)
1
Q9S7M2 TIFY10B
TI10B_ARATH
205 222 PIARRASLHRFLEKRKDRIT TP 1 Arabidopsis thaliana (Thale cress)
1
Q8W4J8 TIFY7
TIF7_ARATH
221 238 PQARKASLARFLEKRKERLM TP 3 Arabidopsis thaliana (Thale cress)
1
Q9LMA8 TIFY10A
TI10A_ARATH
203 220 PIARRASLHRFLEKRKDRVT TP 7 Arabidopsis thaliana (Thale cress)
1
Q9LVI4 TIFY6B
TIF6B_ARATH
303 320 PLARKASLARFLEKRKERVT TP 6 Arabidopsis thaliana (Thale cress)
1
Please cite: ELM-the Eukaryotic Linear Motif resource-2024 update. (PMID:37962385)

ELM data can be downloaded & distributed for non-commercial use according to the ELM Software License Agreement

AltStyle によって変換されたページ (->オリジナル) /