pandas.DataFrame.var#

DataFrame.var(axis=0, skipna=True, ddof=1, numeric_only=False, **kwargs)[source] #

Return unbiased variance over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument.

Parameters:
axis{index (0), columns (1)}

For Series this parameter is unused and defaults to 0.

Warning

The behavior of DataFrame.var with axis=None is deprecated, in a future version this will reduce over both axes and return a scalar To retain the old behavior, pass axis=0 (or do not pass axis).

skipnabool, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

ddofint, default 1

Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.

numeric_onlybool, default False

Include only float, int, boolean columns. Not implemented for Series.

Returns:
Series or DataFrame (if level specified)

Examples

>>> df = pd.DataFrame({'person_id': [0, 1, 2, 3],
...  'age': [21, 25, 62, 43],
...  'height': [1.61, 1.87, 1.49, 2.01]}
...  ).set_index('person_id')
>>> df
 age height
person_id
0 21 1.61
1 25 1.87
2 62 1.49
3 43 2.01
>>> df.var()
age 352.916667
height 0.056367
dtype: float64

Alternatively, ddof=0 can be set to normalize by N instead of N-1:

>>> df.var(ddof=0)
age 264.687500
height 0.042275
dtype: float64