pandas.DataFrame.resample#
- DataFrame.resample(rule, axis=<no_default>, closed=None, label=None, convention=<no_default>, kind=<no_default>, on=None, level=None, origin='start_day', offset=None, group_keys=False)[source] #
Resample time-series data.
Convenience method for frequency conversion and resampling of time series. The object must have a datetime-like index (DatetimeIndex, PeriodIndex, or TimedeltaIndex), or the caller must pass the label of a datetime-like series/index to the
on
/level
keyword parameter.- Parameters:
- ruleDateOffset, Timedelta or str
The offset string or object representing target conversion.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
Which axis to use for up- or down-sampling. For Series this parameter is unused and defaults to 0. Must be DatetimeIndex, TimedeltaIndex or PeriodIndex.
Deprecated since version 2.0.0: Use frame.T.resample(...) instead.
- closed{‘right’, ‘left’}, default None
Which side of bin interval is closed. The default is ‘left’ for all frequency offsets except for ‘ME’, ‘YE’, ‘QE’, ‘BME’, ‘BA’, ‘BQE’, and ‘W’ which all have a default of ‘right’.
- label{‘right’, ‘left’}, default None
Which bin edge label to label bucket with. The default is ‘left’ for all frequency offsets except for ‘ME’, ‘YE’, ‘QE’, ‘BME’, ‘BA’, ‘BQE’, and ‘W’ which all have a default of ‘right’.
- convention{‘start’, ‘end’, ‘s’, ‘e’}, default ‘start’
For PeriodIndex only, controls whether to use the start or end of rule.
Deprecated since version 2.2.0: Convert PeriodIndex to DatetimeIndex before resampling instead.
- kind{‘timestamp’, ‘period’}, optional, default None
Pass ‘timestamp’ to convert the resulting index to a DateTimeIndex or ‘period’ to convert it to a PeriodIndex. By default the input representation is retained.
Deprecated since version 2.2.0: Convert index to desired type explicitly instead.
- onstr, optional
For a DataFrame, column to use instead of index for resampling. Column must be datetime-like.
- levelstr or int, optional
For a MultiIndex, level (name or number) to use for resampling. level must be datetime-like.
- originTimestamp or str, default ‘start_day’
The timestamp on which to adjust the grouping. The timezone of origin must match the timezone of the index. If string, must be one of the following:
‘epoch’: origin is 1970年01月01日
‘start’: origin is the first value of the timeseries
‘start_day’: origin is the first day at midnight of the timeseries
‘end’: origin is the last value of the timeseries
‘end_day’: origin is the ceiling midnight of the last day
Added in version 1.3.0.
Note
Only takes effect for Tick-frequencies (i.e. fixed frequencies like days, hours, and minutes, rather than months or quarters).
- offsetTimedelta or str, default is None
An offset timedelta added to the origin.
- group_keysbool, default False
Whether to include the group keys in the result index when using
.apply()
on the resampled object.Added in version 1.5.0: Not specifying
group_keys
will retain values-dependent behavior from pandas 1.4 and earlier (see pandas 1.5.0 Release notes for examples).Changed in version 2.0.0:
group_keys
now defaults toFalse
.
- Returns:
- pandas.api.typing.Resampler
Resampler
object.
See also
Series.resample
Resample a Series.
DataFrame.resample
Resample a DataFrame.
groupby
Group Series/DataFrame by mapping, function, label, or list of labels.
asfreq
Reindex a Series/DataFrame with the given frequency without grouping.
Notes
See the user guide for more.
To learn more about the offset strings, please see this link.
Examples
Start by creating a series with 9 one minute timestamps.
>>> index = pd.date_range('1/1/2000', periods=9, freq='min') >>> series = pd.Series(range(9), index=index) >>> series 2000年01月01日 00:00:00 0 2000年01月01日 00:01:00 1 2000年01月01日 00:02:00 2 2000年01月01日 00:03:00 3 2000年01月01日 00:04:00 4 2000年01月01日 00:05:00 5 2000年01月01日 00:06:00 6 2000年01月01日 00:07:00 7 2000年01月01日 00:08:00 8 Freq: min, dtype: int64
Downsample the series into 3 minute bins and sum the values of the timestamps falling into a bin.
>>> series.resample('3min').sum() 2000年01月01日 00:00:00 3 2000年01月01日 00:03:00 12 2000年01月01日 00:06:00 21 Freq: 3min, dtype: int64
Downsample the series into 3 minute bins as above, but label each bin using the right edge instead of the left. Please note that the value in the bucket used as the label is not included in the bucket, which it labels. For example, in the original series the bucket
2000年01月01日 00:03:00
contains the value 3, but the summed value in the resampled bucket with the label2000年01月01日 00:03:00
does not include 3 (if it did, the summed value would be 6, not 3).>>> series.resample('3min', label='right').sum() 2000年01月01日 00:03:00 3 2000年01月01日 00:06:00 12 2000年01月01日 00:09:00 21 Freq: 3min, dtype: int64
To include this value close the right side of the bin interval, as shown below.
>>> series.resample('3min', label='right', closed='right').sum() 2000年01月01日 00:00:00 0 2000年01月01日 00:03:00 6 2000年01月01日 00:06:00 15 2000年01月01日 00:09:00 15 Freq: 3min, dtype: int64
Upsample the series into 30 second bins.
>>> series.resample('30s').asfreq()[0:5] # Select first 5 rows 2000年01月01日 00:00:00 0.0 2000年01月01日 00:00:30 NaN 2000年01月01日 00:01:00 1.0 2000年01月01日 00:01:30 NaN 2000年01月01日 00:02:00 2.0 Freq: 30s, dtype: float64
Upsample the series into 30 second bins and fill the
NaN
values using theffill
method.>>> series.resample('30s').ffill()[0:5] 2000年01月01日 00:00:00 0 2000年01月01日 00:00:30 0 2000年01月01日 00:01:00 1 2000年01月01日 00:01:30 1 2000年01月01日 00:02:00 2 Freq: 30s, dtype: int64
Upsample the series into 30 second bins and fill the
NaN
values using thebfill
method.>>> series.resample('30s').bfill()[0:5] 2000年01月01日 00:00:00 0 2000年01月01日 00:00:30 1 2000年01月01日 00:01:00 1 2000年01月01日 00:01:30 2 2000年01月01日 00:02:00 2 Freq: 30s, dtype: int64
Pass a custom function via
apply
>>> def custom_resampler(arraylike): ... return np.sum(arraylike) + 5 ... >>> series.resample('3min').apply(custom_resampler) 2000年01月01日 00:00:00 8 2000年01月01日 00:03:00 17 2000年01月01日 00:06:00 26 Freq: 3min, dtype: int64
For DataFrame objects, the keyword on can be used to specify the column instead of the index for resampling.
>>> d = {'price': [10, 11, 9, 13, 14, 18, 17, 19], ... 'volume': [50, 60, 40, 100, 50, 100, 40, 50]} >>> df = pd.DataFrame(d) >>> df['week_starting'] = pd.date_range('01/01/2018', ... periods=8, ... freq='W') >>> df price volume week_starting 0 10 50 2018年01月07日 1 11 60 2018年01月14日 2 9 40 2018年01月21日 3 13 100 2018年01月28日 4 14 50 2018年02月04日 5 18 100 2018年02月11日 6 17 40 2018年02月18日 7 19 50 2018年02月25日 >>> df.resample('ME', on='week_starting').mean() price volume week_starting 2018年01月31日 10.75 62.5 2018年02月28日 17.00 60.0
For a DataFrame with MultiIndex, the keyword level can be used to specify on which level the resampling needs to take place.
>>> days = pd.date_range('1/1/2000', periods=4, freq='D') >>> d2 = {'price': [10, 11, 9, 13, 14, 18, 17, 19], ... 'volume': [50, 60, 40, 100, 50, 100, 40, 50]} >>> df2 = pd.DataFrame( ... d2, ... index=pd.MultiIndex.from_product( ... [days, ['morning', 'afternoon']] ... ) ... ) >>> df2 price volume 2000年01月01日 morning 10 50 afternoon 11 60 2000年01月02日 morning 9 40 afternoon 13 100 2000年01月03日 morning 14 50 afternoon 18 100 2000年01月04日 morning 17 40 afternoon 19 50 >>> df2.resample('D', level=0).sum() price volume 2000年01月01日 21 110 2000年01月02日 22 140 2000年01月03日 32 150 2000年01月04日 36 90
If you want to adjust the start of the bins based on a fixed timestamp:
>>> start, end = '2000年10月01日 23:30:00', '2000年10月02日 00:30:00' >>> rng = pd.date_range(start, end, freq='7min') >>> ts = pd.Series(np.arange(len(rng)) * 3, index=rng) >>> ts 2000年10月01日 23:30:00 0 2000年10月01日 23:37:00 3 2000年10月01日 23:44:00 6 2000年10月01日 23:51:00 9 2000年10月01日 23:58:00 12 2000年10月02日 00:05:00 15 2000年10月02日 00:12:00 18 2000年10月02日 00:19:00 21 2000年10月02日 00:26:00 24 Freq: 7min, dtype: int64
>>> ts.resample('17min').sum() 2000年10月01日 23:14:00 0 2000年10月01日 23:31:00 9 2000年10月01日 23:48:00 21 2000年10月02日 00:05:00 54 2000年10月02日 00:22:00 24 Freq: 17min, dtype: int64
>>> ts.resample('17min', origin='epoch').sum() 2000年10月01日 23:18:00 0 2000年10月01日 23:35:00 18 2000年10月01日 23:52:00 27 2000年10月02日 00:09:00 39 2000年10月02日 00:26:00 24 Freq: 17min, dtype: int64
>>> ts.resample('17min', origin='2000年01月01日').sum() 2000年10月01日 23:24:00 3 2000年10月01日 23:41:00 15 2000年10月01日 23:58:00 45 2000年10月02日 00:15:00 45 Freq: 17min, dtype: int64
If you want to adjust the start of the bins with an offset Timedelta, the two following lines are equivalent:
>>> ts.resample('17min', origin='start').sum() 2000年10月01日 23:30:00 9 2000年10月01日 23:47:00 21 2000年10月02日 00:04:00 54 2000年10月02日 00:21:00 24 Freq: 17min, dtype: int64
>>> ts.resample('17min', offset='23h30min').sum() 2000年10月01日 23:30:00 9 2000年10月01日 23:47:00 21 2000年10月02日 00:04:00 54 2000年10月02日 00:21:00 24 Freq: 17min, dtype: int64
If you want to take the largest Timestamp as the end of the bins:
>>> ts.resample('17min', origin='end').sum() 2000年10月01日 23:35:00 0 2000年10月01日 23:52:00 18 2000年10月02日 00:09:00 27 2000年10月02日 00:26:00 63 Freq: 17min, dtype: int64
In contrast with the start_day, you can use end_day to take the ceiling midnight of the largest Timestamp as the end of the bins and drop the bins not containing data:
>>> ts.resample('17min', origin='end_day').sum() 2000年10月01日 23:38:00 3 2000年10月01日 23:55:00 15 2000年10月02日 00:12:00 45 2000年10月02日 00:29:00 45 Freq: 17min, dtype: int64