Generate Kernel Density Estimate plot using Gaussian kernels.
In statistics, kernel density estimation (KDE) is a non-parametric
way to estimate the probability density function (PDF) of a random
variable. This function uses Gaussian kernels and includes automatic
bandwidth determination.
Parameters:
bw_methodstr, scalar or callable, optional
The method used to calculate the estimator bandwidth. This can be
‘scott’, ‘silverman’, a scalar constant or a callable.
If None (default), ‘scott’ is used.
See scipy.stats.gaussian_kde for more information.
indNumPy array or int, optional
Evaluation points for the estimated PDF. If None (default),
1000 equally spaced points are used. If ind is a NumPy array, the
KDE is evaluated at the points passed. If ind is an integer,
ind number of equally spaced points are used.
**kwargs
Additional keyword arguments are documented in
DataFrame.plot().
Representation of a kernel-density estimate using Gaussian kernels. This is the function used internally to estimate the PDF.
Examples
Given a Series of points randomly sampled from an unknown
distribution, estimate its PDF using KDE with automatic
bandwidth determination and plot the results, evaluating them at
1000 equally spaced points (default):
A scalar bandwidth can be specified. Using a small bandwidth value can
lead to over-fitting, while using a large bandwidth value may result
in under-fitting:
>>> ax=s.plot.kde(bw_method=0.3)
../../_images/pandas-DataFrame-plot-density-2.png
>>> ax=s.plot.kde(bw_method=3)
../../_images/pandas-DataFrame-plot-density-3.png
Finally, the ind parameter determines the evaluation points for the
plot of the estimated PDF:
A scalar bandwidth can be specified. Using a small bandwidth value can
lead to over-fitting, while using a large bandwidth value may result
in under-fitting:
>>> ax=df.plot.kde(bw_method=0.3)
../../_images/pandas-DataFrame-plot-density-6.png
>>> ax=df.plot.kde(bw_method=3)
../../_images/pandas-DataFrame-plot-density-7.png
Finally, the ind parameter determines the evaluation points for the
plot of the estimated PDF: