GroupBy#
pandas.api.typing.DataFrameGroupBy
and pandas.api.typing.SeriesGroupBy
instances are returned by groupby calls pandas.DataFrame.groupby()
and
pandas.Series.groupby()
respectively.
Indexing, iteration#
Groupby iterator.
Groupby iterator.
Dict {group name -> group labels}.
Dict {group name -> group labels}.
Dict {group name -> group indices}.
Dict {group name -> group indices}.
DataFrameGroupBy.get_group
(name[, obj])
Construct DataFrame from group with provided name.
SeriesGroupBy.get_group
(name[, obj])
Construct DataFrame from group with provided name.
Grouper
(*args, **kwargs)
A Grouper allows the user to specify a groupby instruction for an object.
Function application helper#
NamedAgg
(column, aggfunc)
Helper for column specific aggregation with control over output column names.
Function application#
SeriesGroupBy.apply
(func, *args, **kwargs)
Apply function func
group-wise and combine the results together.
DataFrameGroupBy.apply
(func, *args[, ...])
Apply function func
group-wise and combine the results together.
SeriesGroupBy.agg
([func, engine, engine_kwargs])
Aggregate using one or more operations over the specified axis.
DataFrameGroupBy.agg
([func, engine, ...])
Aggregate using one or more operations over the specified axis.
SeriesGroupBy.aggregate
([func, engine, ...])
Aggregate using one or more operations over the specified axis.
DataFrameGroupBy.aggregate
([func, engine, ...])
Aggregate using one or more operations over the specified axis.
SeriesGroupBy.transform
(func, *args[, ...])
Call function producing a same-indexed Series on each group.
DataFrameGroupBy.transform
(func, *args[, ...])
Call function producing a same-indexed DataFrame on each group.
SeriesGroupBy.pipe
(func, *args, **kwargs)
Apply a func
with arguments to this GroupBy object and return its result.
DataFrameGroupBy.pipe
(func, *args, **kwargs)
Apply a func
with arguments to this GroupBy object and return its result.
DataFrameGroupBy.filter
(func[, dropna])
Filter elements from groups that don't satisfy a criterion.
SeriesGroupBy.filter
(func[, dropna])
Filter elements from groups that don't satisfy a criterion.
DataFrameGroupBy
computations / descriptive stats#
DataFrameGroupBy.all
([skipna])
Return True if all values in the group are truthful, else False.
DataFrameGroupBy.any
([skipna])
Return True if any value in the group is truthful, else False.
DataFrameGroupBy.bfill
([limit])
Backward fill the values.
DataFrameGroupBy.corr
([method, min_periods, ...])
Compute pairwise correlation of columns, excluding NA/null values.
DataFrameGroupBy.corrwith
(other[, axis, ...])
Compute pairwise correlation.
Compute count of group, excluding missing values.
DataFrameGroupBy.cov
([min_periods, ddof, ...])
Compute pairwise covariance of columns, excluding NA/null values.
DataFrameGroupBy.cumcount
([ascending])
Number each item in each group from 0 to the length of that group - 1.
DataFrameGroupBy.cummax
([axis, numeric_only])
Cumulative max for each group.
DataFrameGroupBy.cummin
([axis, numeric_only])
Cumulative min for each group.
DataFrameGroupBy.cumprod
([axis])
Cumulative product for each group.
DataFrameGroupBy.cumsum
([axis])
Cumulative sum for each group.
DataFrameGroupBy.describe
([percentiles, ...])
Generate descriptive statistics.
DataFrameGroupBy.diff
([periods, axis])
First discrete difference of element.
DataFrameGroupBy.ffill
([limit])
Forward fill the values.
DataFrameGroupBy.fillna
([value, method, ...])
(DEPRECATED) Fill NA/NaN values using the specified method within groups.
DataFrameGroupBy.first
([numeric_only, ...])
Compute the first entry of each column within each group.
Return first n rows of each group.
DataFrameGroupBy.idxmax
([axis, skipna, ...])
Return index of first occurrence of maximum over requested axis.
DataFrameGroupBy.idxmin
([axis, skipna, ...])
Return index of first occurrence of minimum over requested axis.
DataFrameGroupBy.last
([numeric_only, ...])
Compute the last entry of each column within each group.
DataFrameGroupBy.max
([numeric_only, ...])
Compute max of group values.
DataFrameGroupBy.mean
([numeric_only, ...])
Compute mean of groups, excluding missing values.
DataFrameGroupBy.median
([numeric_only])
Compute median of groups, excluding missing values.
DataFrameGroupBy.min
([numeric_only, ...])
Compute min of group values.
DataFrameGroupBy.ngroup
([ascending])
Number each group from 0 to the number of groups - 1.
Take the nth row from each group if n is an int, otherwise a subset of rows.
DataFrameGroupBy.nunique
([dropna])
Return DataFrame with counts of unique elements in each position.
Compute open, high, low and close values of a group, excluding missing values.
DataFrameGroupBy.pct_change
([periods, ...])
Calculate pct_change of each value to previous entry in group.
DataFrameGroupBy.prod
([numeric_only, min_count])
Compute prod of group values.
DataFrameGroupBy.quantile
([q, ...])
Return group values at the given quantile, a la numpy.percentile.
DataFrameGroupBy.rank
([method, ascending, ...])
Provide the rank of values within each group.
DataFrameGroupBy.resample
(rule, *args[, ...])
Provide resampling when using a TimeGrouper.
DataFrameGroupBy.rolling
(*args, **kwargs)
Return a rolling grouper, providing rolling functionality per group.
DataFrameGroupBy.sample
([n, frac, replace, ...])
Return a random sample of items from each group.
DataFrameGroupBy.sem
([ddof, numeric_only])
Compute standard error of the mean of groups, excluding missing values.
DataFrameGroupBy.shift
([periods, freq, ...])
Shift each group by periods observations.
Compute group sizes.
DataFrameGroupBy.skew
([axis, skipna, ...])
Return unbiased skew within groups.
DataFrameGroupBy.std
([ddof, engine, ...])
Compute standard deviation of groups, excluding missing values.
DataFrameGroupBy.sum
([numeric_only, ...])
Compute sum of group values.
DataFrameGroupBy.var
([ddof, engine, ...])
Compute variance of groups, excluding missing values.
Return last n rows of each group.
DataFrameGroupBy.take
(indices[, axis])
Return the elements in the given positional indices in each group.
DataFrameGroupBy.value_counts
([subset, ...])
Return a Series or DataFrame containing counts of unique rows.
SeriesGroupBy
computations / descriptive stats#
SeriesGroupBy.all
([skipna])
Return True if all values in the group are truthful, else False.
SeriesGroupBy.any
([skipna])
Return True if any value in the group is truthful, else False.
SeriesGroupBy.bfill
([limit])
Backward fill the values.
SeriesGroupBy.corr
(other[, method, min_periods])
Compute correlation with other Series, excluding missing values.
Compute count of group, excluding missing values.
SeriesGroupBy.cov
(other[, min_periods, ddof])
Compute covariance with Series, excluding missing values.
SeriesGroupBy.cumcount
([ascending])
Number each item in each group from 0 to the length of that group - 1.
SeriesGroupBy.cummax
([axis, numeric_only])
Cumulative max for each group.
SeriesGroupBy.cummin
([axis, numeric_only])
Cumulative min for each group.
SeriesGroupBy.cumprod
([axis])
Cumulative product for each group.
SeriesGroupBy.cumsum
([axis])
Cumulative sum for each group.
SeriesGroupBy.describe
([percentiles, ...])
Generate descriptive statistics.
SeriesGroupBy.diff
([periods, axis])
First discrete difference of element.
SeriesGroupBy.ffill
([limit])
Forward fill the values.
SeriesGroupBy.fillna
([value, method, axis, ...])
(DEPRECATED) Fill NA/NaN values using the specified method within groups.
SeriesGroupBy.first
([numeric_only, ...])
Compute the first entry of each column within each group.
SeriesGroupBy.head
([n])
Return first n rows of each group.
SeriesGroupBy.last
([numeric_only, ...])
Compute the last entry of each column within each group.
SeriesGroupBy.idxmax
([axis, skipna])
Return the row label of the maximum value.
SeriesGroupBy.idxmin
([axis, skipna])
Return the row label of the minimum value.
SeriesGroupBy.is_monotonic_increasing
Return whether each group's values are monotonically increasing.
SeriesGroupBy.is_monotonic_decreasing
Return whether each group's values are monotonically decreasing.
SeriesGroupBy.max
([numeric_only, min_count, ...])
Compute max of group values.
SeriesGroupBy.mean
([numeric_only, engine, ...])
Compute mean of groups, excluding missing values.
SeriesGroupBy.median
([numeric_only])
Compute median of groups, excluding missing values.
SeriesGroupBy.min
([numeric_only, min_count, ...])
Compute min of group values.
SeriesGroupBy.ngroup
([ascending])
Number each group from 0 to the number of groups - 1.
SeriesGroupBy.nlargest
([n, keep])
Return the largest n elements.
SeriesGroupBy.nsmallest
([n, keep])
Return the smallest n elements.
Take the nth row from each group if n is an int, otherwise a subset of rows.
SeriesGroupBy.nunique
([dropna])
Return number of unique elements in the group.
Return unique values for each group.
Compute open, high, low and close values of a group, excluding missing values.
SeriesGroupBy.pct_change
([periods, ...])
Calculate pct_change of each value to previous entry in group.
SeriesGroupBy.prod
([numeric_only, min_count])
Compute prod of group values.
SeriesGroupBy.quantile
([q, interpolation, ...])
Return group values at the given quantile, a la numpy.percentile.
SeriesGroupBy.rank
([method, ascending, ...])
Provide the rank of values within each group.
SeriesGroupBy.resample
(rule, *args[, ...])
Provide resampling when using a TimeGrouper.
SeriesGroupBy.rolling
(*args, **kwargs)
Return a rolling grouper, providing rolling functionality per group.
SeriesGroupBy.sample
([n, frac, replace, ...])
Return a random sample of items from each group.
SeriesGroupBy.sem
([ddof, numeric_only])
Compute standard error of the mean of groups, excluding missing values.
SeriesGroupBy.shift
([periods, freq, axis, ...])
Shift each group by periods observations.
Compute group sizes.
SeriesGroupBy.skew
([axis, skipna, numeric_only])
Return unbiased skew within groups.
SeriesGroupBy.std
([ddof, engine, ...])
Compute standard deviation of groups, excluding missing values.
SeriesGroupBy.sum
([numeric_only, min_count, ...])
Compute sum of group values.
SeriesGroupBy.var
([ddof, engine, ...])
Compute variance of groups, excluding missing values.
SeriesGroupBy.tail
([n])
Return last n rows of each group.
SeriesGroupBy.take
(indices[, axis])
Return the elements in the given positional indices in each group.
SeriesGroupBy.value_counts
([normalize, ...])
Plotting and visualization#
DataFrameGroupBy.boxplot
([subplots, column, ...])
Make box plots from DataFrameGroupBy data.
DataFrameGroupBy.hist
([column, by, grid, ...])
Make a histogram of the DataFrame's columns.
SeriesGroupBy.hist
([by, ax, grid, ...])
Draw histogram of the input series using matplotlib.
Make plots of Series or DataFrame.
Make plots of Series or DataFrame.