pandas.core.groupby.SeriesGroupBy.skew#

SeriesGroupBy.skew(axis=<no_default>, skipna=True, numeric_only=False, **kwargs)[source] #

Return unbiased skew within groups.

Normalized by N-1.

Parameters:
axis{0 or ‘index’, 1 or ‘columns’, None}, default 0

Axis for the function to be applied on. This parameter is only for compatibility with DataFrame and is unused.

Deprecated since version 2.1.0: For axis=1, operate on the underlying object instead. Otherwise the axis keyword is not necessary.

skipnabool, default True

Exclude NA/null values when computing the result.

numeric_onlybool, default False

Include only float, int, boolean columns. Not implemented for Series.

**kwargs

Additional keyword arguments to be passed to the function.

Returns:
Series

See also

Series.skew

Return unbiased skew over requested axis.

Examples

>>> ser = pd.Series([390., 350., 357., np.nan, 22., 20., 30.],
...  index=['Falcon', 'Falcon', 'Falcon', 'Falcon',
...  'Parrot', 'Parrot', 'Parrot'],
...  name="Max Speed")
>>> ser
Falcon 390.0
Falcon 350.0
Falcon 357.0
Falcon NaN
Parrot 22.0
Parrot 20.0
Parrot 30.0
Name: Max Speed, dtype: float64
>>> ser.groupby(level=0).skew()
Falcon 1.525174
Parrot 1.457863
Name: Max Speed, dtype: float64
>>> ser.groupby(level=0).skew(skipna=False)
Falcon NaN
Parrot 1.457863
Name: Max Speed, dtype: float64