std::ranges::for_each_n, std::ranges::for_each_n_result
From cppreference.com
C++
Feature test macros (C++20)
Concepts library (C++20)
Metaprogramming library (C++11)
Ranges library (C++20)
Filesystem library (C++17)
Concurrency support library (C++11)
Execution control library (C++26)
Algorithm library
Constrained algorithms, e.g. ranges::copy, ranges::sort, ...
(C++17)
(C++17) (C++17)(C++17)(C++20)
(C++17)
(C++11)
(until C++17)(C++11)
(C++20)(C++20)
(C++17)
(C++17)
(C++17)
(C++17)
Constrained algorithms
All names in this menu belong to namespace
std::ranges
(C++23)
(C++23)
(C++23)
(C++23)
(C++23)
(C++23)
(C++23)
Defined in header
<algorithm>
Call signature
template< std::input_iterator I, class Proj = std::identity,
(1)
(since C++20)
std::indirectly_unary_invocable <std::projected <I, Proj>> Fun >
constexpr for_each_n_result<I, Fun>
Helper types
template< class I, class F >
using for_each_n_result = ranges::in_fun_result <I, F>;
(2)
(since C++20)
using for_each_n_result = ranges::in_fun_result <I, F>;
1) Applies the given function object f to the projected result by proj of dereferencing each iterator in the range
[
first,
first + n)
, in order.If the iterator type is mutable, f may modify the elements of the range through the dereferenced iterator. If f returns a result, the result is ignored. If n is less than zero, the behavior is undefined.
The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
[edit] Parameters
first
-
iterator denoting the begin of the range to apply the function to
n
-
the number of elements to apply the function to
f
-
the function to apply to the projected range
[
first,
first + n)
proj
-
projection to apply to the elements
[edit] Return value
An object {first + n, std::move(f)}, where first + n may be evaluated as std::ranges::next (std::move(first), n) depending on iterator category.
[edit] Complexity
Exactly n applications of f and proj.
[edit] Possible implementation
struct for_each_n_fn { template<std::input_iterator I, class Proj = std::identity, std::indirectly_unary_invocable <std::projected <I, Proj>> Fun> constexpr for_each_n_result<I, Fun> operator()(I first, std::iter_difference_t <I> n, Fun fun, Proj proj = Proj{}) const { for (; n-- > 0; ++first) std::invoke (fun, std::invoke (proj, *first)); return {std::move(first), std::move(fun)}; } }; inline constexpr for_each_n_fn for_each_n {};
[edit] Example
Run this code
#include <algorithm> #include <array> #include <iostream> #include <ranges> #include <string_view> struct P { int first; char second; friend std::ostream & operator<<(std::ostream & os, const P& p) { return os << '{' << p.first << ",'" << p.second << "'}"; } }; auto print = [](std::string_view name, auto const& v) { std::cout << name << ": "; for (auto n = v.size(); const auto& e : v) std::cout << e << (--n ? ", " : "\n"); }; int main() { std::array a {1, 2, 3, 4, 5}; print("a", a); // Negate first three numbers: std::ranges::for_each_n(a.begin(), 3, [](auto& n) { n *= -1; }); print("a", a); std::array s { P{1,'a'}, P{2, 'b'}, P{3, 'c'}, P{4, 'd'} }; print("s", s); // Negate data members 'P::first' using projection: std::ranges::for_each_n(s.begin(), 2, [](auto& x) { x *= -1; }, &P::first); print("s", s); // Capitalize data members 'P::second' using projection: std::ranges::for_each_n(s.begin(), 3, [](auto& c) { c -= 'a'-'A'; }, &P::second); print("s", s); }
Output:
a: 1, 2, 3, 4, 5 a: -1, -2, -3, 4, 5 s: {1,'a'}, {2,'b'}, {3,'c'}, {4,'d'} s: {-1,'a'}, {-2,'b'}, {3,'c'}, {4,'d'} s: {-1,'A'}, {-2,'B'}, {3,'C'}, {4,'d'}