std::ranges::fold_left_first
(on partitioned ranges)
std::ranges
<algorithm>
/*indirectly-binary-left-foldable*/<std::iter_value_t <I>, I> F >
requires std::constructible_from <std::iter_value_t <I>, std::iter_reference_t <I>>
constexpr auto
/*indirectly-binary-left-foldable*/<
ranges::range_value_t <R>, ranges::iterator_t <R>> F >
requires std::constructible_from <
ranges::range_value_t <R>, ranges::range_reference_t <R>>
constexpr auto
Left-folds the elements of given range, that is, returns the result of evaluation of the chain expression:f(f(f(f(x1, x2), x3), ...), xn)
, where x1
, x2
, ..., xn
are elements of the range.
Informally, ranges::fold_left_first
behaves like std::accumulate 's overload that accepts a binary predicate, except that the *first is used internally as an initial element.
The behavior is undefined if [
first,
last)
is not a valid range.
[
first,
last)
. Equivalent to
return ranges::fold_left_first_with_iter (std::move(first), last, f).value.concept /*indirectly-binary-left-foldable-impl*/ =
std::movable <T> &&
std::movable <U> &&
std::convertible_to <T, U> &&
std::invocable <F&, U, std::iter_reference_t <I>> &&
std::assignable_from <U&,
concept /*indirectly-binary-left-foldable*/ =
std::copy_constructible <F> &&
std::indirectly_readable <I> &&
std::invocable <F&, T, std::iter_reference_t <I>> &&
std::convertible_to <std::invoke_result_t <F&, T, std::iter_reference_t <I>>,
std::decay_t <std::invoke_result_t <F&, T, std::iter_reference_t <I>>>> &&
/*indirectly-binary-left-foldable-impl*/<F, T, I,
The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
An object of type std::optional <U> that contains the result of left-fold of the given range over f, where U is equivalent to decltype(ranges::fold_left (std::move(first), last, std::iter_value_t <I>(*first), f)).
If the range is empty, std::optional <U>() is returned.
struct fold_left_first_fn { template<std::input_iterator I, std::sentinel_for <I> S, /*indirectly-binary-left-foldable*/<std::iter_value_t <I>, I> F> requires std::constructible_from <std::iter_value_t <I>, std::iter_reference_t <I>> constexpr auto operator()(I first, S last, F f) const { using U = decltype( ranges::fold_left (std::move(first), last, std::iter_value_t <I>(*first), f) ); if (first == last) return std::optional <U>(); std::optional <U> init(std::in_place, *first); for (++first; first != last; ++first) *init = std::invoke (f, std::move(*init), *first); return std::move(init); } template<ranges::input_range R, /*indirectly-binary-left-foldable*/< ranges::range_value_t <R>, ranges::iterator_t <R>> F> requires std::constructible_from <ranges::range_value_t <R>, ranges::range_reference_t <R>> constexpr auto operator()(R&& r, F f) const { return (*this)(ranges::begin (r), ranges::end (r), std::ref (f)); } }; inline constexpr fold_left_first_fn fold_left_first;
Exactly ranges::distance (first, last) - 1 (assuming the range is not empty) applications of the function object f.
The following table compares all constrained folding algorithms:
Fold function template | Starts from | Initial value | Return type |
---|---|---|---|
ranges::fold_left | left | init | U |
ranges::fold_left_first | left | first element | std::optional <U> |
ranges::fold_right | right | init | U |
ranges::fold_right_last | right | last element | std::optional <U> |
ranges::fold_left_with_iter | left | init |
(1) ranges::in_value_result <I, U> (2) ranges::in_value_result <BR, U>, where BR is ranges::borrowed_iterator_t <R> |
ranges::fold_left_first_with_iter | left | first element |
(1) ranges::in_value_result <I, std::optional <U>> (2) ranges::in_value_result <BR, std::optional <U>> where BR is ranges::borrowed_iterator_t <R> |
Feature-test macro | Value | Std | Feature |
---|---|---|---|
__cpp_lib_ranges_fold |
202207L |
(C++23) | std::ranges fold algorithms
|
#include <algorithm> #include <array> #include <functional> #include <ranges> #include <utility> int main() { constexpr std::array v{1, 2, 3, 4, 5, 6, 7, 8}; static_assert ( *std::ranges::fold_left_first(v.begin(), v.end(), std::plus {}) == 36 && *std::ranges::fold_left_first(v, std::multiplies {}) == 40320 ); constexpr std::array w { 1, 2, 3, 4, 13, 1, 2, 3, 4, 13, 1, 2, 3, 4, 13, 1, 2, 3, 4, }; static_assert ( "Find the only value that (by precondition) occurs odd number of times:" && *std::ranges::fold_left_first(w, [](int p, int q){ return p ^ q; }) == 13 ); constexpr auto pairs = std::to_array <std::pair <char, float>> ({ {'A', 3.0f}, {'B', 3.5f}, {'C', 4.0f} }); static_assert ( "Get the product of all pair::second in pairs:" && *std::ranges::fold_left_first ( pairs | std::ranges::views::values, std::multiplies {} ) == 42 ); }