std::ranges::find_last, std::ranges::find_last_if, std::ranges::find_last_if_not
(on partitioned ranges)
std::ranges
<algorithm>
class T,
class Proj = std::identity >
requires std::indirect_binary_predicate
<ranges::equal_to, std::projected <I, Proj>, const T*>
constexpr ranges::subrange <I>
class Proj = std::identity,
class T = std::projected_value_t<I, Proj> >
requires std::indirect_binary_predicate
<ranges::equal_to, std::projected <I, Proj>, const T*>
constexpr ranges::subrange <I>
class T,
class Proj = std::identity >
requires std::indirect_binary_predicate
<ranges::equal_to,
std::projected <ranges::iterator_t <R>, Proj>, const T*>
constexpr ranges::borrowed_subrange_t <R>
class Proj = std::identity,
class T = std::projected_value_t<iterator_t<R>, Proj> >
requires std::indirect_binary_predicate
<ranges::equal_to,
std::projected <ranges::iterator_t <R>, Proj>, const T*>
constexpr ranges::borrowed_subrange_t <R>
class Proj = std::identity,
std::indirect_unary_predicate <std::projected <I, Proj>> Pred >
constexpr ranges::subrange <I>
class Proj = std::identity,
std::indirect_unary_predicate
<std::projected <ranges::iterator_t <R>, Proj>> Pred >
constexpr ranges::borrowed_subrange_t <R>
class Proj = std::identity,
std::indirect_unary_predicate <std::projected <I, Proj>> Pred >
constexpr ranges::subrange <I>
class Proj = std::identity,
std::indirect_unary_predicate
<std::projected <ranges::iterator_t <R>, Proj>> Pred >
constexpr ranges::borrowed_subrange_t <R>
Returns the last element in the range [
first,
last)
that satisfies specific criteria:
find_last
searches for an element equal to value.find_last_if
searches for the last element in the range [
first,
last)
for which predicate pred returns true.find_last_if_not
searches for the last element in the range [
first,
last)
for which predicate pred returns false.The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
[
first,
last)
for which E is true.At most last - first applications of the predicate and projection.
ranges::find_last
, ranges::find_last_if
, ranges::find_last_if_not
have better efficiency on common implementations if I
models bidirectional_iterator
or (better) random_access_iterator
.
Feature-test macro | Value | Std | Feature |
---|---|---|---|
__cpp_lib_ranges_find_last |
202207L |
(C++23) | ranges::find_last ,ranges::find_last_if ,ranges::find_last_if_not
|
__cpp_lib_algorithm_default_value_type |
202403L |
(C++26) | List-initialization for algorithms (1,2) |
These implementations only show the slower algorithm used when I models forward_iterator
.
find_last (1,2) |
---|
struct find_last_fn { template<std::forward_iterator I, std::sentinel_for <I> S, class Proj = std::identity, class T = std::projected_value_t<iterator_t<R>, Proj>> requires std::indirect_binary_predicate <ranges::equal_to, std::projected <I, Proj>, const T*> constexpr ranges::subrange <I> operator()(I first, S last, const T &value, Proj proj = {}) const { // Note: if I is mere forward_iterator, we may only go from begin to end. std::optional <I> found; for (; first != last; ++first) if (std::invoke (proj, *first) == value) found = first; if (!found) return {first, first}; return {*found, std::ranges::next (*found, last)}; } template<ranges::forward_range R, class Proj = std::identity, class T = std::projected_value_t<iterator_t<R>, Proj>> requires std::indirect_binary_predicate <ranges::equal_to, std::projected <ranges::iterator_t <R>, Proj>, const T*> constexpr ranges::borrowed_subrange_t <R> operator()(R&& r, const T &value, Proj proj = {}) const { return this->operator()(ranges::begin (r), ranges::end (r), value, std::ref (proj)); } }; inline constexpr find_last_fn find_last; |
find_last_if (3,4) |
struct find_last_if_fn { template<std::forward_iterator I, std::sentinel_for <I> S, class Proj = std::identity, std::indirect_unary_predicate <std::projected <I, Proj>> Pred> constexpr ranges::subrange <I> operator()(I first, S last, Pred pred, Proj proj = {}) const { // Note: if I is mere forward_iterator, we may only go from begin to end. std::optional <I> found; for (; first != last; ++first) if (std::invoke (pred, std::invoke (proj, *first))) found = first; if (!found) return {first, first}; return {*found, std::ranges::next (*found, last)}; } template<ranges::forward_range R, class Proj = std::identity, std::indirect_unary_predicate <std::projected <ranges::iterator_t <R>, Proj>> Pred> constexpr ranges::borrowed_subrange_t <R> operator()(R&& r, Pred pred, Proj proj = {}) const { return this->operator()(ranges::begin (r), ranges::end (r), std::ref (pred), std::ref (proj)); } }; inline constexpr find_last_if_fn find_last_if; |
find_last_if_not (5,6) |
struct find_last_if_not_fn { template<std::forward_iterator I, std::sentinel_for <I> S, class Proj = std::identity, std::indirect_unary_predicate <std::projected <I, Proj>> Pred> constexpr ranges::subrange <I> operator()(I first, S last, Pred pred, Proj proj = {}) const { // Note: if I is mere forward_iterator, we may only go from begin to end. std::optional <I> found; for (; first != last; ++first) if (!std::invoke (pred, std::invoke (proj, *first))) found = first; if (!found) return {first, first}; return {*found, std::ranges::next (*found, last)}; } template<ranges::forward_range R, class Proj = std::identity, std::indirect_unary_predicate <std::projected <ranges::iterator_t <R>, Proj>> Pred> constexpr ranges::borrowed_subrange_t <R> operator()(R&& r, Pred pred, Proj proj = {}) const { return this->operator()(ranges::begin (r), ranges::end (r), std::ref (pred), std::ref (proj)); } }; inline constexpr find_last_if_not_fn find_last_if_not; |
#include <algorithm> #include <cassert> #include <forward_list> #include <iomanip> #include <iostream> #include <string_view> int main() { namespace ranges = std::ranges; constexpr static auto v = {1, 2, 3, 1, 2, 3, 1, 2}; { constexpr auto i1 = ranges::find_last(v.begin(), v.end(), 3); constexpr auto i2 = ranges::find_last(v, 3); static_assert(ranges::distance (v.begin(), i1.begin()) == 5); static_assert(ranges::distance (v.begin(), i2.begin()) == 5); } { constexpr auto i1 = ranges::find_last(v.begin(), v.end(), -3); constexpr auto i2 = ranges::find_last(v, -3); static_assert(i1.begin() == v.end()); static_assert(i2.begin() == v.end()); } auto abs = [](int x) { return x < 0 ? -x : x; }; { auto pred = [](int x) { return x == 3; }; constexpr auto i1 = ranges::find_last_if(v.begin(), v.end(), pred, abs); constexpr auto i2 = ranges::find_last_if(v, pred, abs); static_assert(ranges::distance (v.begin(), i1.begin()) == 5); static_assert(ranges::distance (v.begin(), i2.begin()) == 5); } { auto pred = [](int x) { return x == -3; }; constexpr auto i1 = ranges::find_last_if(v.begin(), v.end(), pred, abs); constexpr auto i2 = ranges::find_last_if(v, pred, abs); static_assert(i1.begin() == v.end()); static_assert(i2.begin() == v.end()); } { auto pred = [](int x) { return x == 1 or x == 2; }; constexpr auto i1 = ranges::find_last_if_not(v.begin(), v.end(), pred, abs); constexpr auto i2 = ranges::find_last_if_not(v, pred, abs); static_assert(ranges::distance (v.begin(), i1.begin()) == 5); static_assert(ranges::distance (v.begin(), i2.begin()) == 5); } { auto pred = [](int x) { return x == 1 or x == 2 or x == 3; }; constexpr auto i1 = ranges::find_last_if_not(v.begin(), v.end(), pred, abs); constexpr auto i2 = ranges::find_last_if_not(v, pred, abs); static_assert(i1.begin() == v.end()); static_assert(i2.begin() == v.end()); } using P = std::pair <std::string_view, int>; std::forward_list <P> list { {"one", 1}, {"two", 2}, {"three", 3}, {"one", 4}, {"two", 5}, {"three", 6}, }; auto cmp_one = [](const std::string_view &s) { return s == "one"; }; // find latest element that satisfy the comparator, and projecting pair::first const auto subrange = ranges::find_last_if(list, cmp_one, &P::first); std::cout << "The found element and the tail after it are:\n"; for (P const& e : subrange) std::cout << '{' << std::quoted (e.first) << ", " << e.second << "} "; std::cout << '\n'; #if __cpp_lib_algorithm_default_value_type const auto i3 = ranges::find_last(list, {"three", 3}); // (2) C++26 #else const auto i3 = ranges::find_last(list, P{"three", 3}); // (2) C++23 #endif assert (i3.begin()->first == "three" && i3.begin()->second == 3); }
Output:
The found element and the tail after it are: {"one", 4} {"two", 5} {"three", 6}