Class ExplanationMetadata.InputMetadata (1.2.0)
Stay organized with collections
Save and categorize content based on your preferences.
publicstaticfinalclass ExplanationMetadata.InputMetadataextendsGeneratedMessageV3implementsExplanationMetadata.InputMetadataOrBuilderMetadata of the input of a feature.
Fields other than InputMetadata.input_baselines are applicable only for Models that are using Vertex AI-provided images for Tensorflow.
Protobuf type google.cloud.vertexai.v1.ExplanationMetadata.InputMetadata
Inheritance
Object > AbstractMessageLite<MessageType,BuilderType> > AbstractMessage > GeneratedMessageV3 > ExplanationMetadata.InputMetadataImplements
ExplanationMetadata.InputMetadataOrBuilderInherited Members
Static Fields
DENSE_SHAPE_TENSOR_NAME_FIELD_NUMBER
publicstaticfinalintDENSE_SHAPE_TENSOR_NAME_FIELD_NUMBER| Field Value | |
|---|---|
| Type | Description |
int |
|
ENCODED_BASELINES_FIELD_NUMBER
publicstaticfinalintENCODED_BASELINES_FIELD_NUMBER| Field Value | |
|---|---|
| Type | Description |
int |
|
ENCODED_TENSOR_NAME_FIELD_NUMBER
publicstaticfinalintENCODED_TENSOR_NAME_FIELD_NUMBER| Field Value | |
|---|---|
| Type | Description |
int |
|
ENCODING_FIELD_NUMBER
publicstaticfinalintENCODING_FIELD_NUMBER| Field Value | |
|---|---|
| Type | Description |
int |
|
FEATURE_VALUE_DOMAIN_FIELD_NUMBER
publicstaticfinalintFEATURE_VALUE_DOMAIN_FIELD_NUMBER| Field Value | |
|---|---|
| Type | Description |
int |
|
GROUP_NAME_FIELD_NUMBER
publicstaticfinalintGROUP_NAME_FIELD_NUMBER| Field Value | |
|---|---|
| Type | Description |
int |
|
INDEX_FEATURE_MAPPING_FIELD_NUMBER
publicstaticfinalintINDEX_FEATURE_MAPPING_FIELD_NUMBER| Field Value | |
|---|---|
| Type | Description |
int |
|
INDICES_TENSOR_NAME_FIELD_NUMBER
publicstaticfinalintINDICES_TENSOR_NAME_FIELD_NUMBER| Field Value | |
|---|---|
| Type | Description |
int |
|
INPUT_BASELINES_FIELD_NUMBER
publicstaticfinalintINPUT_BASELINES_FIELD_NUMBER| Field Value | |
|---|---|
| Type | Description |
int |
|
INPUT_TENSOR_NAME_FIELD_NUMBER
publicstaticfinalintINPUT_TENSOR_NAME_FIELD_NUMBER| Field Value | |
|---|---|
| Type | Description |
int |
|
MODALITY_FIELD_NUMBER
publicstaticfinalintMODALITY_FIELD_NUMBER| Field Value | |
|---|---|
| Type | Description |
int |
|
VISUALIZATION_FIELD_NUMBER
publicstaticfinalintVISUALIZATION_FIELD_NUMBER| Field Value | |
|---|---|
| Type | Description |
int |
|
Static Methods
getDefaultInstance()
publicstaticExplanationMetadata.InputMetadatagetDefaultInstance()| Returns | |
|---|---|
| Type | Description |
ExplanationMetadata.InputMetadata |
|
getDescriptor()
publicstaticfinalDescriptors.DescriptorgetDescriptor()| Returns | |
|---|---|
| Type | Description |
Descriptor |
|
newBuilder()
publicstaticExplanationMetadata.InputMetadata.BuildernewBuilder()| Returns | |
|---|---|
| Type | Description |
ExplanationMetadata.InputMetadata.Builder |
|
newBuilder(ExplanationMetadata.InputMetadata prototype)
publicstaticExplanationMetadata.InputMetadata.BuildernewBuilder(ExplanationMetadata.InputMetadataprototype)| Parameter | |
|---|---|
| Name | Description |
prototype |
ExplanationMetadata.InputMetadata |
| Returns | |
|---|---|
| Type | Description |
ExplanationMetadata.InputMetadata.Builder |
|
parseDelimitedFrom(InputStream input)
publicstaticExplanationMetadata.InputMetadataparseDelimitedFrom(InputStreaminput)| Parameter | |
|---|---|
| Name | Description |
input |
InputStream |
| Returns | |
|---|---|
| Type | Description |
ExplanationMetadata.InputMetadata |
|
| Exceptions | |
|---|---|
| Type | Description |
IOException |
|
parseDelimitedFrom(InputStream input, ExtensionRegistryLite extensionRegistry)
publicstaticExplanationMetadata.InputMetadataparseDelimitedFrom(InputStreaminput,ExtensionRegistryLiteextensionRegistry)| Parameters | |
|---|---|
| Name | Description |
input |
InputStream |
extensionRegistry |
ExtensionRegistryLite |
| Returns | |
|---|---|
| Type | Description |
ExplanationMetadata.InputMetadata |
|
| Exceptions | |
|---|---|
| Type | Description |
IOException |
|
parseFrom(byte[] data)
publicstaticExplanationMetadata.InputMetadataparseFrom(byte[]data)| Parameter | |
|---|---|
| Name | Description |
data |
byte[] |
| Returns | |
|---|---|
| Type | Description |
ExplanationMetadata.InputMetadata |
|
| Exceptions | |
|---|---|
| Type | Description |
InvalidProtocolBufferException |
|
parseFrom(byte[] data, ExtensionRegistryLite extensionRegistry)
publicstaticExplanationMetadata.InputMetadataparseFrom(byte[]data,ExtensionRegistryLiteextensionRegistry)| Parameters | |
|---|---|
| Name | Description |
data |
byte[] |
extensionRegistry |
ExtensionRegistryLite |
| Returns | |
|---|---|
| Type | Description |
ExplanationMetadata.InputMetadata |
|
| Exceptions | |
|---|---|
| Type | Description |
InvalidProtocolBufferException |
|
parseFrom(ByteString data)
publicstaticExplanationMetadata.InputMetadataparseFrom(ByteStringdata)| Parameter | |
|---|---|
| Name | Description |
data |
ByteString |
| Returns | |
|---|---|
| Type | Description |
ExplanationMetadata.InputMetadata |
|
| Exceptions | |
|---|---|
| Type | Description |
InvalidProtocolBufferException |
|
parseFrom(ByteString data, ExtensionRegistryLite extensionRegistry)
publicstaticExplanationMetadata.InputMetadataparseFrom(ByteStringdata,ExtensionRegistryLiteextensionRegistry)| Parameters | |
|---|---|
| Name | Description |
data |
ByteString |
extensionRegistry |
ExtensionRegistryLite |
| Returns | |
|---|---|
| Type | Description |
ExplanationMetadata.InputMetadata |
|
| Exceptions | |
|---|---|
| Type | Description |
InvalidProtocolBufferException |
|
parseFrom(CodedInputStream input)
publicstaticExplanationMetadata.InputMetadataparseFrom(CodedInputStreaminput)| Parameter | |
|---|---|
| Name | Description |
input |
CodedInputStream |
| Returns | |
|---|---|
| Type | Description |
ExplanationMetadata.InputMetadata |
|
| Exceptions | |
|---|---|
| Type | Description |
IOException |
|
parseFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
publicstaticExplanationMetadata.InputMetadataparseFrom(CodedInputStreaminput,ExtensionRegistryLiteextensionRegistry)| Parameters | |
|---|---|
| Name | Description |
input |
CodedInputStream |
extensionRegistry |
ExtensionRegistryLite |
| Returns | |
|---|---|
| Type | Description |
ExplanationMetadata.InputMetadata |
|
| Exceptions | |
|---|---|
| Type | Description |
IOException |
|
parseFrom(InputStream input)
publicstaticExplanationMetadata.InputMetadataparseFrom(InputStreaminput)| Parameter | |
|---|---|
| Name | Description |
input |
InputStream |
| Returns | |
|---|---|
| Type | Description |
ExplanationMetadata.InputMetadata |
|
| Exceptions | |
|---|---|
| Type | Description |
IOException |
|
parseFrom(InputStream input, ExtensionRegistryLite extensionRegistry)
publicstaticExplanationMetadata.InputMetadataparseFrom(InputStreaminput,ExtensionRegistryLiteextensionRegistry)| Parameters | |
|---|---|
| Name | Description |
input |
InputStream |
extensionRegistry |
ExtensionRegistryLite |
| Returns | |
|---|---|
| Type | Description |
ExplanationMetadata.InputMetadata |
|
| Exceptions | |
|---|---|
| Type | Description |
IOException |
|
parseFrom(ByteBuffer data)
publicstaticExplanationMetadata.InputMetadataparseFrom(ByteBufferdata)| Parameter | |
|---|---|
| Name | Description |
data |
ByteBuffer |
| Returns | |
|---|---|
| Type | Description |
ExplanationMetadata.InputMetadata |
|
| Exceptions | |
|---|---|
| Type | Description |
InvalidProtocolBufferException |
|
parseFrom(ByteBuffer data, ExtensionRegistryLite extensionRegistry)
publicstaticExplanationMetadata.InputMetadataparseFrom(ByteBufferdata,ExtensionRegistryLiteextensionRegistry)| Parameters | |
|---|---|
| Name | Description |
data |
ByteBuffer |
extensionRegistry |
ExtensionRegistryLite |
| Returns | |
|---|---|
| Type | Description |
ExplanationMetadata.InputMetadata |
|
| Exceptions | |
|---|---|
| Type | Description |
InvalidProtocolBufferException |
|
parser()
publicstaticParser<ExplanationMetadata.InputMetadata>parser()| Returns | |
|---|---|
| Type | Description |
Parser<InputMetadata> |
|
Methods
equals(Object obj)
publicbooleanequals(Objectobj)| Parameter | |
|---|---|
| Name | Description |
obj |
Object |
| Returns | |
|---|---|
| Type | Description |
boolean |
|
getDefaultInstanceForType()
publicExplanationMetadata.InputMetadatagetDefaultInstanceForType()| Returns | |
|---|---|
| Type | Description |
ExplanationMetadata.InputMetadata |
|
getDenseShapeTensorName()
publicStringgetDenseShapeTensorName()Specifies the shape of the values of the input if the input is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
string dense_shape_tensor_name = 7;
| Returns | |
|---|---|
| Type | Description |
String |
The denseShapeTensorName. |
getDenseShapeTensorNameBytes()
publicByteStringgetDenseShapeTensorNameBytes()Specifies the shape of the values of the input if the input is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
string dense_shape_tensor_name = 7;
| Returns | |
|---|---|
| Type | Description |
ByteString |
The bytes for denseShapeTensorName. |
getEncodedBaselines(int index)
publicValuegetEncodedBaselines(intindex)A list of baselines for the encoded tensor.
The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
repeated .google.protobuf.Value encoded_baselines = 10;
| Parameter | |
|---|---|
| Name | Description |
index |
int |
| Returns | |
|---|---|
| Type | Description |
Value |
|
getEncodedBaselinesCount()
publicintgetEncodedBaselinesCount()A list of baselines for the encoded tensor.
The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
repeated .google.protobuf.Value encoded_baselines = 10;
| Returns | |
|---|---|
| Type | Description |
int |
|
getEncodedBaselinesList()
publicList<Value>getEncodedBaselinesList()A list of baselines for the encoded tensor.
The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
repeated .google.protobuf.Value encoded_baselines = 10;
| Returns | |
|---|---|
| Type | Description |
List<Value> |
|
getEncodedBaselinesOrBuilder(int index)
publicValueOrBuildergetEncodedBaselinesOrBuilder(intindex)A list of baselines for the encoded tensor.
The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
repeated .google.protobuf.Value encoded_baselines = 10;
| Parameter | |
|---|---|
| Name | Description |
index |
int |
| Returns | |
|---|---|
| Type | Description |
ValueOrBuilder |
|
getEncodedBaselinesOrBuilderList()
publicList<?extendsValueOrBuilder>getEncodedBaselinesOrBuilderList()A list of baselines for the encoded tensor.
The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
repeated .google.protobuf.Value encoded_baselines = 10;
| Returns | |
|---|---|
| Type | Description |
List<? extends com.google.protobuf.ValueOrBuilder> |
|
getEncodedTensorName()
publicStringgetEncodedTensorName()Encoded tensor is a transformation of the input tensor. Must be provided if choosing Integrated Gradients attribution or XRAI attribution and the input tensor is not differentiable.
An encoded tensor is generated if the input tensor is encoded by a lookup table.
string encoded_tensor_name = 9;
| Returns | |
|---|---|
| Type | Description |
String |
The encodedTensorName. |
getEncodedTensorNameBytes()
publicByteStringgetEncodedTensorNameBytes()Encoded tensor is a transformation of the input tensor. Must be provided if choosing Integrated Gradients attribution or XRAI attribution and the input tensor is not differentiable.
An encoded tensor is generated if the input tensor is encoded by a lookup table.
string encoded_tensor_name = 9;
| Returns | |
|---|---|
| Type | Description |
ByteString |
The bytes for encodedTensorName. |
getEncoding()
publicExplanationMetadata.InputMetadata.EncodinggetEncoding()Defines how the feature is encoded into the input tensor. Defaults to IDENTITY.
.google.cloud.vertexai.v1.ExplanationMetadata.InputMetadata.Encoding encoding = 3;
| Returns | |
|---|---|
| Type | Description |
ExplanationMetadata.InputMetadata.Encoding |
The encoding. |
getEncodingValue()
publicintgetEncodingValue()Defines how the feature is encoded into the input tensor. Defaults to IDENTITY.
.google.cloud.vertexai.v1.ExplanationMetadata.InputMetadata.Encoding encoding = 3;
| Returns | |
|---|---|
| Type | Description |
int |
The enum numeric value on the wire for encoding. |
getFeatureValueDomain()
publicExplanationMetadata.InputMetadata.FeatureValueDomaingetFeatureValueDomain()The domain details of the input feature value. Like min/max, original mean or standard deviation if normalized.
.google.cloud.vertexai.v1.ExplanationMetadata.InputMetadata.FeatureValueDomain feature_value_domain = 5;
| Returns | |
|---|---|
| Type | Description |
ExplanationMetadata.InputMetadata.FeatureValueDomain |
The featureValueDomain. |
getFeatureValueDomainOrBuilder()
publicExplanationMetadata.InputMetadata.FeatureValueDomainOrBuildergetFeatureValueDomainOrBuilder()The domain details of the input feature value. Like min/max, original mean or standard deviation if normalized.
.google.cloud.vertexai.v1.ExplanationMetadata.InputMetadata.FeatureValueDomain feature_value_domain = 5;
| Returns | |
|---|---|
| Type | Description |
ExplanationMetadata.InputMetadata.FeatureValueDomainOrBuilder |
|
getGroupName()
publicStringgetGroupName()Name of the group that the input belongs to. Features with the same group name will be treated as one feature when computing attributions. Features grouped together can have different shapes in value. If provided, there will be one single attribution generated in Attribution.feature_attributions, keyed by the group name.
string group_name = 12;
| Returns | |
|---|---|
| Type | Description |
String |
The groupName. |
getGroupNameBytes()
publicByteStringgetGroupNameBytes()Name of the group that the input belongs to. Features with the same group name will be treated as one feature when computing attributions. Features grouped together can have different shapes in value. If provided, there will be one single attribution generated in Attribution.feature_attributions, keyed by the group name.
string group_name = 12;
| Returns | |
|---|---|
| Type | Description |
ByteString |
The bytes for groupName. |
getIndexFeatureMapping(int index)
publicStringgetIndexFeatureMapping(intindex)A list of feature names for each index in the input tensor. Required when the input InputMetadata.encoding is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.
repeated string index_feature_mapping = 8;
| Parameter | |
|---|---|
| Name | Description |
index |
int The index of the element to return. |
| Returns | |
|---|---|
| Type | Description |
String |
The indexFeatureMapping at the given index. |
getIndexFeatureMappingBytes(int index)
publicByteStringgetIndexFeatureMappingBytes(intindex)A list of feature names for each index in the input tensor. Required when the input InputMetadata.encoding is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.
repeated string index_feature_mapping = 8;
| Parameter | |
|---|---|
| Name | Description |
index |
int The index of the value to return. |
| Returns | |
|---|---|
| Type | Description |
ByteString |
The bytes of the indexFeatureMapping at the given index. |
getIndexFeatureMappingCount()
publicintgetIndexFeatureMappingCount()A list of feature names for each index in the input tensor. Required when the input InputMetadata.encoding is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.
repeated string index_feature_mapping = 8;
| Returns | |
|---|---|
| Type | Description |
int |
The count of indexFeatureMapping. |
getIndexFeatureMappingList()
publicProtocolStringListgetIndexFeatureMappingList()A list of feature names for each index in the input tensor. Required when the input InputMetadata.encoding is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.
repeated string index_feature_mapping = 8;
| Returns | |
|---|---|
| Type | Description |
ProtocolStringList |
A list containing the indexFeatureMapping. |
getIndicesTensorName()
publicStringgetIndicesTensorName()Specifies the index of the values of the input tensor. Required when the input tensor is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
string indices_tensor_name = 6;
| Returns | |
|---|---|
| Type | Description |
String |
The indicesTensorName. |
getIndicesTensorNameBytes()
publicByteStringgetIndicesTensorNameBytes()Specifies the index of the values of the input tensor. Required when the input tensor is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
string indices_tensor_name = 6;
| Returns | |
|---|---|
| Type | Description |
ByteString |
The bytes for indicesTensorName. |
getInputBaselines(int index)
publicValuegetInputBaselines(intindex)Baseline inputs for this feature.
If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in Attribution.feature_attributions.
For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor.
For custom images, the element of the baselines must be in the same format as the feature's input in the instance[]. The schema of any single instance may be specified via Endpoint's DeployedModels' Model's PredictSchemata's instance_schema_uri.
repeated .google.protobuf.Value input_baselines = 1;
| Parameter | |
|---|---|
| Name | Description |
index |
int |
| Returns | |
|---|---|
| Type | Description |
Value |
|
getInputBaselinesCount()
publicintgetInputBaselinesCount()Baseline inputs for this feature.
If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in Attribution.feature_attributions.
For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor.
For custom images, the element of the baselines must be in the same format as the feature's input in the instance[]. The schema of any single instance may be specified via Endpoint's DeployedModels' Model's PredictSchemata's instance_schema_uri.
repeated .google.protobuf.Value input_baselines = 1;
| Returns | |
|---|---|
| Type | Description |
int |
|
getInputBaselinesList()
publicList<Value>getInputBaselinesList()Baseline inputs for this feature.
If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in Attribution.feature_attributions.
For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor.
For custom images, the element of the baselines must be in the same format as the feature's input in the instance[]. The schema of any single instance may be specified via Endpoint's DeployedModels' Model's PredictSchemata's instance_schema_uri.
repeated .google.protobuf.Value input_baselines = 1;
| Returns | |
|---|---|
| Type | Description |
List<Value> |
|
getInputBaselinesOrBuilder(int index)
publicValueOrBuildergetInputBaselinesOrBuilder(intindex)Baseline inputs for this feature.
If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in Attribution.feature_attributions.
For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor.
For custom images, the element of the baselines must be in the same format as the feature's input in the instance[]. The schema of any single instance may be specified via Endpoint's DeployedModels' Model's PredictSchemata's instance_schema_uri.
repeated .google.protobuf.Value input_baselines = 1;
| Parameter | |
|---|---|
| Name | Description |
index |
int |
| Returns | |
|---|---|
| Type | Description |
ValueOrBuilder |
|
getInputBaselinesOrBuilderList()
publicList<?extendsValueOrBuilder>getInputBaselinesOrBuilderList()Baseline inputs for this feature.
If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in Attribution.feature_attributions.
For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor.
For custom images, the element of the baselines must be in the same format as the feature's input in the instance[]. The schema of any single instance may be specified via Endpoint's DeployedModels' Model's PredictSchemata's instance_schema_uri.
repeated .google.protobuf.Value input_baselines = 1;
| Returns | |
|---|---|
| Type | Description |
List<? extends com.google.protobuf.ValueOrBuilder> |
|
getInputTensorName()
publicStringgetInputTensorName()Name of the input tensor for this feature. Required and is only applicable to Vertex AI-provided images for Tensorflow.
string input_tensor_name = 2;
| Returns | |
|---|---|
| Type | Description |
String |
The inputTensorName. |
getInputTensorNameBytes()
publicByteStringgetInputTensorNameBytes()Name of the input tensor for this feature. Required and is only applicable to Vertex AI-provided images for Tensorflow.
string input_tensor_name = 2;
| Returns | |
|---|---|
| Type | Description |
ByteString |
The bytes for inputTensorName. |
getModality()
publicStringgetModality()Modality of the feature. Valid values are: numeric, image. Defaults to numeric.
string modality = 4;
| Returns | |
|---|---|
| Type | Description |
String |
The modality. |
getModalityBytes()
publicByteStringgetModalityBytes()Modality of the feature. Valid values are: numeric, image. Defaults to numeric.
string modality = 4;
| Returns | |
|---|---|
| Type | Description |
ByteString |
The bytes for modality. |
getParserForType()
publicParser<ExplanationMetadata.InputMetadata>getParserForType()| Returns | |
|---|---|
| Type | Description |
Parser<InputMetadata> |
|
getSerializedSize()
publicintgetSerializedSize()| Returns | |
|---|---|
| Type | Description |
int |
|
getVisualization()
publicExplanationMetadata.InputMetadata.VisualizationgetVisualization()Visualization configurations for image explanation.
.google.cloud.vertexai.v1.ExplanationMetadata.InputMetadata.Visualization visualization = 11;
| Returns | |
|---|---|
| Type | Description |
ExplanationMetadata.InputMetadata.Visualization |
The visualization. |
getVisualizationOrBuilder()
publicExplanationMetadata.InputMetadata.VisualizationOrBuildergetVisualizationOrBuilder()Visualization configurations for image explanation.
.google.cloud.vertexai.v1.ExplanationMetadata.InputMetadata.Visualization visualization = 11;
| Returns | |
|---|---|
| Type | Description |
ExplanationMetadata.InputMetadata.VisualizationOrBuilder |
|
hasFeatureValueDomain()
publicbooleanhasFeatureValueDomain()The domain details of the input feature value. Like min/max, original mean or standard deviation if normalized.
.google.cloud.vertexai.v1.ExplanationMetadata.InputMetadata.FeatureValueDomain feature_value_domain = 5;
| Returns | |
|---|---|
| Type | Description |
boolean |
Whether the featureValueDomain field is set. |
hasVisualization()
publicbooleanhasVisualization()Visualization configurations for image explanation.
.google.cloud.vertexai.v1.ExplanationMetadata.InputMetadata.Visualization visualization = 11;
| Returns | |
|---|---|
| Type | Description |
boolean |
Whether the visualization field is set. |
hashCode()
publicinthashCode()| Returns | |
|---|---|
| Type | Description |
int |
|
internalGetFieldAccessorTable()
protectedGeneratedMessageV3.FieldAccessorTableinternalGetFieldAccessorTable()| Returns | |
|---|---|
| Type | Description |
FieldAccessorTable |
|
isInitialized()
publicfinalbooleanisInitialized()| Returns | |
|---|---|
| Type | Description |
boolean |
|
newBuilderForType()
publicExplanationMetadata.InputMetadata.BuildernewBuilderForType()| Returns | |
|---|---|
| Type | Description |
ExplanationMetadata.InputMetadata.Builder |
|
newBuilderForType(GeneratedMessageV3.BuilderParent parent)
protectedExplanationMetadata.InputMetadata.BuildernewBuilderForType(GeneratedMessageV3.BuilderParentparent)| Parameter | |
|---|---|
| Name | Description |
parent |
BuilderParent |
| Returns | |
|---|---|
| Type | Description |
ExplanationMetadata.InputMetadata.Builder |
|
newInstance(GeneratedMessageV3.UnusedPrivateParameter unused)
protectedObjectnewInstance(GeneratedMessageV3.UnusedPrivateParameterunused)| Parameter | |
|---|---|
| Name | Description |
unused |
UnusedPrivateParameter |
| Returns | |
|---|---|
| Type | Description |
Object |
|
toBuilder()
publicExplanationMetadata.InputMetadata.BuildertoBuilder()| Returns | |
|---|---|
| Type | Description |
ExplanationMetadata.InputMetadata.Builder |
|
writeTo(CodedOutputStream output)
publicvoidwriteTo(CodedOutputStreamoutput)| Parameter | |
|---|---|
| Name | Description |
output |
CodedOutputStream |
| Exceptions | |
|---|---|
| Type | Description |
IOException |
|