Class ExplanationParameters.Builder (1.2.0)
Stay organized with collections
Save and categorize content based on your preferences.
publicstaticfinalclass ExplanationParameters.BuilderextendsGeneratedMessageV3.Builder<ExplanationParameters.Builder>implementsExplanationParametersOrBuilderParameters to configure explaining for Model's predictions.
Protobuf type google.cloud.vertexai.v1.ExplanationParameters
Inheritance
Object > AbstractMessageLite.Builder<MessageType,BuilderType> > AbstractMessage.Builder<BuilderType> > GeneratedMessageV3.Builder > ExplanationParameters.BuilderImplements
ExplanationParametersOrBuilderInherited Members
Static Methods
getDescriptor()
publicstaticfinalDescriptors.DescriptorgetDescriptor()| Returns | |
|---|---|
| Type | Description |
Descriptor |
|
Methods
addRepeatedField(Descriptors.FieldDescriptor field, Object value)
publicExplanationParameters.BuilderaddRepeatedField(Descriptors.FieldDescriptorfield,Objectvalue)| Parameters | |
|---|---|
| Name | Description |
field |
FieldDescriptor |
value |
Object |
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
build()
publicExplanationParametersbuild()| Returns | |
|---|---|
| Type | Description |
ExplanationParameters |
|
buildPartial()
publicExplanationParametersbuildPartial()| Returns | |
|---|---|
| Type | Description |
ExplanationParameters |
|
clear()
publicExplanationParameters.Builderclear()| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
clearExamples()
publicExplanationParameters.BuilderclearExamples()Example-based explanations that returns the nearest neighbors from the provided dataset.
.google.cloud.vertexai.v1.Examples examples = 7;
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
clearField(Descriptors.FieldDescriptor field)
publicExplanationParameters.BuilderclearField(Descriptors.FieldDescriptorfield)| Parameter | |
|---|---|
| Name | Description |
field |
FieldDescriptor |
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
clearIntegratedGradientsAttribution()
publicExplanationParameters.BuilderclearIntegratedGradientsAttribution()An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
.google.cloud.vertexai.v1.IntegratedGradientsAttribution integrated_gradients_attribution = 2;
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
clearMethod()
publicExplanationParameters.BuilderclearMethod()| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
clearOneof(Descriptors.OneofDescriptor oneof)
publicExplanationParameters.BuilderclearOneof(Descriptors.OneofDescriptoroneof)| Parameter | |
|---|---|
| Name | Description |
oneof |
OneofDescriptor |
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
clearOutputIndices()
publicExplanationParameters.BuilderclearOutputIndices()If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining.
If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs.
Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
.google.protobuf.ListValue output_indices = 5;
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
clearSampledShapleyAttribution()
publicExplanationParameters.BuilderclearSampledShapleyAttribution()An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
.google.cloud.vertexai.v1.SampledShapleyAttribution sampled_shapley_attribution = 1;
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
clearTopK()
publicExplanationParameters.BuilderclearTopK()If populated, returns attributions for top K indices of outputs (defaults to 1). Only applies to Models that predicts more than one outputs (e,g, multi-class Models). When set to -1, returns explanations for all outputs.
int32 top_k = 4;
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
This builder for chaining. |
clearXraiAttribution()
publicExplanationParameters.BuilderclearXraiAttribution()An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825
XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
.google.cloud.vertexai.v1.XraiAttribution xrai_attribution = 3;
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
clone()
publicExplanationParameters.Builderclone()| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
getDefaultInstanceForType()
publicExplanationParametersgetDefaultInstanceForType()| Returns | |
|---|---|
| Type | Description |
ExplanationParameters |
|
getDescriptorForType()
publicDescriptors.DescriptorgetDescriptorForType()| Returns | |
|---|---|
| Type | Description |
Descriptor |
|
getExamples()
publicExamplesgetExamples()Example-based explanations that returns the nearest neighbors from the provided dataset.
.google.cloud.vertexai.v1.Examples examples = 7;
| Returns | |
|---|---|
| Type | Description |
Examples |
The examples. |
getExamplesBuilder()
publicExamples.BuildergetExamplesBuilder()Example-based explanations that returns the nearest neighbors from the provided dataset.
.google.cloud.vertexai.v1.Examples examples = 7;
| Returns | |
|---|---|
| Type | Description |
Examples.Builder |
|
getExamplesOrBuilder()
publicExamplesOrBuildergetExamplesOrBuilder()Example-based explanations that returns the nearest neighbors from the provided dataset.
.google.cloud.vertexai.v1.Examples examples = 7;
| Returns | |
|---|---|
| Type | Description |
ExamplesOrBuilder |
|
getIntegratedGradientsAttribution()
publicIntegratedGradientsAttributiongetIntegratedGradientsAttribution()An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
.google.cloud.vertexai.v1.IntegratedGradientsAttribution integrated_gradients_attribution = 2;
| Returns | |
|---|---|
| Type | Description |
IntegratedGradientsAttribution |
The integratedGradientsAttribution. |
getIntegratedGradientsAttributionBuilder()
publicIntegratedGradientsAttribution.BuildergetIntegratedGradientsAttributionBuilder()An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
.google.cloud.vertexai.v1.IntegratedGradientsAttribution integrated_gradients_attribution = 2;
| Returns | |
|---|---|
| Type | Description |
IntegratedGradientsAttribution.Builder |
|
getIntegratedGradientsAttributionOrBuilder()
publicIntegratedGradientsAttributionOrBuildergetIntegratedGradientsAttributionOrBuilder()An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
.google.cloud.vertexai.v1.IntegratedGradientsAttribution integrated_gradients_attribution = 2;
| Returns | |
|---|---|
| Type | Description |
IntegratedGradientsAttributionOrBuilder |
|
getMethodCase()
publicExplanationParameters.MethodCasegetMethodCase()| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.MethodCase |
|
getOutputIndices()
publicListValuegetOutputIndices()If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining.
If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs.
Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
.google.protobuf.ListValue output_indices = 5;
| Returns | |
|---|---|
| Type | Description |
ListValue |
The outputIndices. |
getOutputIndicesBuilder()
publicListValue.BuildergetOutputIndicesBuilder()If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining.
If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs.
Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
.google.protobuf.ListValue output_indices = 5;
| Returns | |
|---|---|
| Type | Description |
Builder |
|
getOutputIndicesOrBuilder()
publicListValueOrBuildergetOutputIndicesOrBuilder()If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining.
If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs.
Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
.google.protobuf.ListValue output_indices = 5;
| Returns | |
|---|---|
| Type | Description |
ListValueOrBuilder |
|
getSampledShapleyAttribution()
publicSampledShapleyAttributiongetSampledShapleyAttribution()An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
.google.cloud.vertexai.v1.SampledShapleyAttribution sampled_shapley_attribution = 1;
| Returns | |
|---|---|
| Type | Description |
SampledShapleyAttribution |
The sampledShapleyAttribution. |
getSampledShapleyAttributionBuilder()
publicSampledShapleyAttribution.BuildergetSampledShapleyAttributionBuilder()An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
.google.cloud.vertexai.v1.SampledShapleyAttribution sampled_shapley_attribution = 1;
| Returns | |
|---|---|
| Type | Description |
SampledShapleyAttribution.Builder |
|
getSampledShapleyAttributionOrBuilder()
publicSampledShapleyAttributionOrBuildergetSampledShapleyAttributionOrBuilder()An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
.google.cloud.vertexai.v1.SampledShapleyAttribution sampled_shapley_attribution = 1;
| Returns | |
|---|---|
| Type | Description |
SampledShapleyAttributionOrBuilder |
|
getTopK()
publicintgetTopK()If populated, returns attributions for top K indices of outputs (defaults to 1). Only applies to Models that predicts more than one outputs (e,g, multi-class Models). When set to -1, returns explanations for all outputs.
int32 top_k = 4;
| Returns | |
|---|---|
| Type | Description |
int |
The topK. |
getXraiAttribution()
publicXraiAttributiongetXraiAttribution()An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825
XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
.google.cloud.vertexai.v1.XraiAttribution xrai_attribution = 3;
| Returns | |
|---|---|
| Type | Description |
XraiAttribution |
The xraiAttribution. |
getXraiAttributionBuilder()
publicXraiAttribution.BuildergetXraiAttributionBuilder()An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825
XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
.google.cloud.vertexai.v1.XraiAttribution xrai_attribution = 3;
| Returns | |
|---|---|
| Type | Description |
XraiAttribution.Builder |
|
getXraiAttributionOrBuilder()
publicXraiAttributionOrBuildergetXraiAttributionOrBuilder()An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825
XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
.google.cloud.vertexai.v1.XraiAttribution xrai_attribution = 3;
| Returns | |
|---|---|
| Type | Description |
XraiAttributionOrBuilder |
|
hasExamples()
publicbooleanhasExamples()Example-based explanations that returns the nearest neighbors from the provided dataset.
.google.cloud.vertexai.v1.Examples examples = 7;
| Returns | |
|---|---|
| Type | Description |
boolean |
Whether the examples field is set. |
hasIntegratedGradientsAttribution()
publicbooleanhasIntegratedGradientsAttribution()An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
.google.cloud.vertexai.v1.IntegratedGradientsAttribution integrated_gradients_attribution = 2;
| Returns | |
|---|---|
| Type | Description |
boolean |
Whether the integratedGradientsAttribution field is set. |
hasOutputIndices()
publicbooleanhasOutputIndices()If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining.
If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs.
Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
.google.protobuf.ListValue output_indices = 5;
| Returns | |
|---|---|
| Type | Description |
boolean |
Whether the outputIndices field is set. |
hasSampledShapleyAttribution()
publicbooleanhasSampledShapleyAttribution()An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
.google.cloud.vertexai.v1.SampledShapleyAttribution sampled_shapley_attribution = 1;
| Returns | |
|---|---|
| Type | Description |
boolean |
Whether the sampledShapleyAttribution field is set. |
hasXraiAttribution()
publicbooleanhasXraiAttribution()An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825
XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
.google.cloud.vertexai.v1.XraiAttribution xrai_attribution = 3;
| Returns | |
|---|---|
| Type | Description |
boolean |
Whether the xraiAttribution field is set. |
internalGetFieldAccessorTable()
protectedGeneratedMessageV3.FieldAccessorTableinternalGetFieldAccessorTable()| Returns | |
|---|---|
| Type | Description |
FieldAccessorTable |
|
isInitialized()
publicfinalbooleanisInitialized()| Returns | |
|---|---|
| Type | Description |
boolean |
|
mergeExamples(Examples value)
publicExplanationParameters.BuildermergeExamples(Examplesvalue)Example-based explanations that returns the nearest neighbors from the provided dataset.
.google.cloud.vertexai.v1.Examples examples = 7;
| Parameter | |
|---|---|
| Name | Description |
value |
Examples |
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
mergeFrom(ExplanationParameters other)
publicExplanationParameters.BuildermergeFrom(ExplanationParametersother)| Parameter | |
|---|---|
| Name | Description |
other |
ExplanationParameters |
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
publicExplanationParameters.BuildermergeFrom(CodedInputStreaminput,ExtensionRegistryLiteextensionRegistry)| Parameters | |
|---|---|
| Name | Description |
input |
CodedInputStream |
extensionRegistry |
ExtensionRegistryLite |
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
| Exceptions | |
|---|---|
| Type | Description |
IOException |
|
mergeFrom(Message other)
publicExplanationParameters.BuildermergeFrom(Messageother)| Parameter | |
|---|---|
| Name | Description |
other |
Message |
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
mergeIntegratedGradientsAttribution(IntegratedGradientsAttribution value)
publicExplanationParameters.BuildermergeIntegratedGradientsAttribution(IntegratedGradientsAttributionvalue)An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
.google.cloud.vertexai.v1.IntegratedGradientsAttribution integrated_gradients_attribution = 2;
| Parameter | |
|---|---|
| Name | Description |
value |
IntegratedGradientsAttribution |
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
mergeOutputIndices(ListValue value)
publicExplanationParameters.BuildermergeOutputIndices(ListValuevalue)If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining.
If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs.
Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
.google.protobuf.ListValue output_indices = 5;
| Parameter | |
|---|---|
| Name | Description |
value |
ListValue |
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
mergeSampledShapleyAttribution(SampledShapleyAttribution value)
publicExplanationParameters.BuildermergeSampledShapleyAttribution(SampledShapleyAttributionvalue)An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
.google.cloud.vertexai.v1.SampledShapleyAttribution sampled_shapley_attribution = 1;
| Parameter | |
|---|---|
| Name | Description |
value |
SampledShapleyAttribution |
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
mergeUnknownFields(UnknownFieldSet unknownFields)
publicfinalExplanationParameters.BuildermergeUnknownFields(UnknownFieldSetunknownFields)| Parameter | |
|---|---|
| Name | Description |
unknownFields |
UnknownFieldSet |
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
mergeXraiAttribution(XraiAttribution value)
publicExplanationParameters.BuildermergeXraiAttribution(XraiAttributionvalue)An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825
XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
.google.cloud.vertexai.v1.XraiAttribution xrai_attribution = 3;
| Parameter | |
|---|---|
| Name | Description |
value |
XraiAttribution |
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
setExamples(Examples value)
publicExplanationParameters.BuildersetExamples(Examplesvalue)Example-based explanations that returns the nearest neighbors from the provided dataset.
.google.cloud.vertexai.v1.Examples examples = 7;
| Parameter | |
|---|---|
| Name | Description |
value |
Examples |
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
setExamples(Examples.Builder builderForValue)
publicExplanationParameters.BuildersetExamples(Examples.BuilderbuilderForValue)Example-based explanations that returns the nearest neighbors from the provided dataset.
.google.cloud.vertexai.v1.Examples examples = 7;
| Parameter | |
|---|---|
| Name | Description |
builderForValue |
Examples.Builder |
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
setField(Descriptors.FieldDescriptor field, Object value)
publicExplanationParameters.BuildersetField(Descriptors.FieldDescriptorfield,Objectvalue)| Parameters | |
|---|---|
| Name | Description |
field |
FieldDescriptor |
value |
Object |
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
setIntegratedGradientsAttribution(IntegratedGradientsAttribution value)
publicExplanationParameters.BuildersetIntegratedGradientsAttribution(IntegratedGradientsAttributionvalue)An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
.google.cloud.vertexai.v1.IntegratedGradientsAttribution integrated_gradients_attribution = 2;
| Parameter | |
|---|---|
| Name | Description |
value |
IntegratedGradientsAttribution |
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
setIntegratedGradientsAttribution(IntegratedGradientsAttribution.Builder builderForValue)
publicExplanationParameters.BuildersetIntegratedGradientsAttribution(IntegratedGradientsAttribution.BuilderbuilderForValue)An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
.google.cloud.vertexai.v1.IntegratedGradientsAttribution integrated_gradients_attribution = 2;
| Parameter | |
|---|---|
| Name | Description |
builderForValue |
IntegratedGradientsAttribution.Builder |
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
setOutputIndices(ListValue value)
publicExplanationParameters.BuildersetOutputIndices(ListValuevalue)If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining.
If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs.
Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
.google.protobuf.ListValue output_indices = 5;
| Parameter | |
|---|---|
| Name | Description |
value |
ListValue |
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
setOutputIndices(ListValue.Builder builderForValue)
publicExplanationParameters.BuildersetOutputIndices(ListValue.BuilderbuilderForValue)If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining.
If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs.
Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
.google.protobuf.ListValue output_indices = 5;
| Parameter | |
|---|---|
| Name | Description |
builderForValue |
Builder |
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
publicExplanationParameters.BuildersetRepeatedField(Descriptors.FieldDescriptorfield,intindex,Objectvalue)| Parameters | |
|---|---|
| Name | Description |
field |
FieldDescriptor |
index |
int |
value |
Object |
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
setSampledShapleyAttribution(SampledShapleyAttribution value)
publicExplanationParameters.BuildersetSampledShapleyAttribution(SampledShapleyAttributionvalue)An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
.google.cloud.vertexai.v1.SampledShapleyAttribution sampled_shapley_attribution = 1;
| Parameter | |
|---|---|
| Name | Description |
value |
SampledShapleyAttribution |
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
setSampledShapleyAttribution(SampledShapleyAttribution.Builder builderForValue)
publicExplanationParameters.BuildersetSampledShapleyAttribution(SampledShapleyAttribution.BuilderbuilderForValue)An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
.google.cloud.vertexai.v1.SampledShapleyAttribution sampled_shapley_attribution = 1;
| Parameter | |
|---|---|
| Name | Description |
builderForValue |
SampledShapleyAttribution.Builder |
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
setTopK(int value)
publicExplanationParameters.BuildersetTopK(intvalue)If populated, returns attributions for top K indices of outputs (defaults to 1). Only applies to Models that predicts more than one outputs (e,g, multi-class Models). When set to -1, returns explanations for all outputs.
int32 top_k = 4;
| Parameter | |
|---|---|
| Name | Description |
value |
int The topK to set. |
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
This builder for chaining. |
setUnknownFields(UnknownFieldSet unknownFields)
publicfinalExplanationParameters.BuildersetUnknownFields(UnknownFieldSetunknownFields)| Parameter | |
|---|---|
| Name | Description |
unknownFields |
UnknownFieldSet |
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
setXraiAttribution(XraiAttribution value)
publicExplanationParameters.BuildersetXraiAttribution(XraiAttributionvalue)An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825
XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
.google.cloud.vertexai.v1.XraiAttribution xrai_attribution = 3;
| Parameter | |
|---|---|
| Name | Description |
value |
XraiAttribution |
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|
setXraiAttribution(XraiAttribution.Builder builderForValue)
publicExplanationParameters.BuildersetXraiAttribution(XraiAttribution.BuilderbuilderForValue)An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825
XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
.google.cloud.vertexai.v1.XraiAttribution xrai_attribution = 3;
| Parameter | |
|---|---|
| Name | Description |
builderForValue |
XraiAttribution.Builder |
| Returns | |
|---|---|
| Type | Description |
ExplanationParameters.Builder |
|