Class ExplanationParameters.Builder (1.2.0)

publicstaticfinalclass ExplanationParameters.BuilderextendsGeneratedMessageV3.Builder<ExplanationParameters.Builder>implementsExplanationParametersOrBuilder

Parameters to configure explaining for Model's predictions.

Protobuf type google.cloud.vertexai.v1.ExplanationParameters

Inherited Members

com.google.protobuf.GeneratedMessageV3.Builder.getUnknownFieldSetBuilder()
com.google.protobuf.GeneratedMessageV3.Builder.internalGetMapFieldReflection(int)
com.google.protobuf.GeneratedMessageV3.Builder.internalGetMutableMapFieldReflection(int)
com.google.protobuf.GeneratedMessageV3.Builder.mergeUnknownLengthDelimitedField(int,com.google.protobuf.ByteString)
com.google.protobuf.GeneratedMessageV3.Builder.mergeUnknownVarintField(int,int)
com.google.protobuf.GeneratedMessageV3.Builder.parseUnknownField(com.google.protobuf.CodedInputStream,com.google.protobuf.ExtensionRegistryLite,int)
com.google.protobuf.GeneratedMessageV3.Builder.setUnknownFieldSetBuilder(com.google.protobuf.UnknownFieldSet.Builder)

Static Methods

getDescriptor()

publicstaticfinalDescriptors.DescriptorgetDescriptor()
Returns
Type Description
Descriptor

Methods

addRepeatedField(Descriptors.FieldDescriptor field, Object value)

publicExplanationParameters.BuilderaddRepeatedField(Descriptors.FieldDescriptorfield,Objectvalue)
Parameters
Name Description
field FieldDescriptor
value Object
Returns
Type Description
ExplanationParameters.Builder
Overrides

build()

publicExplanationParametersbuild()
Returns
Type Description
ExplanationParameters

buildPartial()

publicExplanationParametersbuildPartial()
Returns
Type Description
ExplanationParameters

clear()

publicExplanationParameters.Builderclear()
Returns
Type Description
ExplanationParameters.Builder
Overrides

clearExamples()

publicExplanationParameters.BuilderclearExamples()

Example-based explanations that returns the nearest neighbors from the provided dataset.

.google.cloud.vertexai.v1.Examples examples = 7;

Returns
Type Description
ExplanationParameters.Builder

clearField(Descriptors.FieldDescriptor field)

publicExplanationParameters.BuilderclearField(Descriptors.FieldDescriptorfield)
Parameter
Name Description
field FieldDescriptor
Returns
Type Description
ExplanationParameters.Builder
Overrides

clearIntegratedGradientsAttribution()

publicExplanationParameters.BuilderclearIntegratedGradientsAttribution()

An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365

.google.cloud.vertexai.v1.IntegratedGradientsAttribution integrated_gradients_attribution = 2;

Returns
Type Description
ExplanationParameters.Builder

clearMethod()

publicExplanationParameters.BuilderclearMethod()
Returns
Type Description
ExplanationParameters.Builder

clearOneof(Descriptors.OneofDescriptor oneof)

publicExplanationParameters.BuilderclearOneof(Descriptors.OneofDescriptoroneof)
Parameter
Name Description
oneof OneofDescriptor
Returns
Type Description
ExplanationParameters.Builder
Overrides

clearOutputIndices()

publicExplanationParameters.BuilderclearOutputIndices()

If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining.

If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs.

Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).

.google.protobuf.ListValue output_indices = 5;

Returns
Type Description
ExplanationParameters.Builder

clearSampledShapleyAttribution()

publicExplanationParameters.BuilderclearSampledShapleyAttribution()

An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.

.google.cloud.vertexai.v1.SampledShapleyAttribution sampled_shapley_attribution = 1;

Returns
Type Description
ExplanationParameters.Builder

clearTopK()

publicExplanationParameters.BuilderclearTopK()

If populated, returns attributions for top K indices of outputs (defaults to 1). Only applies to Models that predicts more than one outputs (e,g, multi-class Models). When set to -1, returns explanations for all outputs.

int32 top_k = 4;

Returns
Type Description
ExplanationParameters.Builder

This builder for chaining.

clearXraiAttribution()

publicExplanationParameters.BuilderclearXraiAttribution()

An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825

XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.

.google.cloud.vertexai.v1.XraiAttribution xrai_attribution = 3;

Returns
Type Description
ExplanationParameters.Builder

clone()

publicExplanationParameters.Builderclone()
Returns
Type Description
ExplanationParameters.Builder
Overrides

getDefaultInstanceForType()

publicExplanationParametersgetDefaultInstanceForType()
Returns
Type Description
ExplanationParameters

getDescriptorForType()

publicDescriptors.DescriptorgetDescriptorForType()
Returns
Type Description
Descriptor
Overrides

getExamples()

publicExamplesgetExamples()

Example-based explanations that returns the nearest neighbors from the provided dataset.

.google.cloud.vertexai.v1.Examples examples = 7;

Returns
Type Description
Examples

The examples.

getExamplesBuilder()

publicExamples.BuildergetExamplesBuilder()

Example-based explanations that returns the nearest neighbors from the provided dataset.

.google.cloud.vertexai.v1.Examples examples = 7;

Returns
Type Description
Examples.Builder

getExamplesOrBuilder()

publicExamplesOrBuildergetExamplesOrBuilder()

Example-based explanations that returns the nearest neighbors from the provided dataset.

.google.cloud.vertexai.v1.Examples examples = 7;

Returns
Type Description
ExamplesOrBuilder

getIntegratedGradientsAttribution()

publicIntegratedGradientsAttributiongetIntegratedGradientsAttribution()

An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365

.google.cloud.vertexai.v1.IntegratedGradientsAttribution integrated_gradients_attribution = 2;

Returns
Type Description
IntegratedGradientsAttribution

The integratedGradientsAttribution.

getIntegratedGradientsAttributionBuilder()

publicIntegratedGradientsAttribution.BuildergetIntegratedGradientsAttributionBuilder()

An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365

.google.cloud.vertexai.v1.IntegratedGradientsAttribution integrated_gradients_attribution = 2;

Returns
Type Description
IntegratedGradientsAttribution.Builder

getIntegratedGradientsAttributionOrBuilder()

publicIntegratedGradientsAttributionOrBuildergetIntegratedGradientsAttributionOrBuilder()

An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365

.google.cloud.vertexai.v1.IntegratedGradientsAttribution integrated_gradients_attribution = 2;

Returns
Type Description
IntegratedGradientsAttributionOrBuilder

getMethodCase()

publicExplanationParameters.MethodCasegetMethodCase()
Returns
Type Description
ExplanationParameters.MethodCase

getOutputIndices()

publicListValuegetOutputIndices()

If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining.

If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs.

Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).

.google.protobuf.ListValue output_indices = 5;

Returns
Type Description
ListValue

The outputIndices.

getOutputIndicesBuilder()

publicListValue.BuildergetOutputIndicesBuilder()

If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining.

If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs.

Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).

.google.protobuf.ListValue output_indices = 5;

Returns
Type Description
Builder

getOutputIndicesOrBuilder()

publicListValueOrBuildergetOutputIndicesOrBuilder()

If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining.

If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs.

Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).

.google.protobuf.ListValue output_indices = 5;

Returns
Type Description
ListValueOrBuilder

getSampledShapleyAttribution()

publicSampledShapleyAttributiongetSampledShapleyAttribution()

An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.

.google.cloud.vertexai.v1.SampledShapleyAttribution sampled_shapley_attribution = 1;

Returns
Type Description
SampledShapleyAttribution

The sampledShapleyAttribution.

getSampledShapleyAttributionBuilder()

publicSampledShapleyAttribution.BuildergetSampledShapleyAttributionBuilder()

An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.

.google.cloud.vertexai.v1.SampledShapleyAttribution sampled_shapley_attribution = 1;

Returns
Type Description
SampledShapleyAttribution.Builder

getSampledShapleyAttributionOrBuilder()

publicSampledShapleyAttributionOrBuildergetSampledShapleyAttributionOrBuilder()

An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.

.google.cloud.vertexai.v1.SampledShapleyAttribution sampled_shapley_attribution = 1;

Returns
Type Description
SampledShapleyAttributionOrBuilder

getTopK()

publicintgetTopK()

If populated, returns attributions for top K indices of outputs (defaults to 1). Only applies to Models that predicts more than one outputs (e,g, multi-class Models). When set to -1, returns explanations for all outputs.

int32 top_k = 4;

Returns
Type Description
int

The topK.

getXraiAttribution()

publicXraiAttributiongetXraiAttribution()

An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825

XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.

.google.cloud.vertexai.v1.XraiAttribution xrai_attribution = 3;

Returns
Type Description
XraiAttribution

The xraiAttribution.

getXraiAttributionBuilder()

publicXraiAttribution.BuildergetXraiAttributionBuilder()

An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825

XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.

.google.cloud.vertexai.v1.XraiAttribution xrai_attribution = 3;

Returns
Type Description
XraiAttribution.Builder

getXraiAttributionOrBuilder()

publicXraiAttributionOrBuildergetXraiAttributionOrBuilder()

An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825

XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.

.google.cloud.vertexai.v1.XraiAttribution xrai_attribution = 3;

Returns
Type Description
XraiAttributionOrBuilder

hasExamples()

publicbooleanhasExamples()

Example-based explanations that returns the nearest neighbors from the provided dataset.

.google.cloud.vertexai.v1.Examples examples = 7;

Returns
Type Description
boolean

Whether the examples field is set.

hasIntegratedGradientsAttribution()

publicbooleanhasIntegratedGradientsAttribution()

An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365

.google.cloud.vertexai.v1.IntegratedGradientsAttribution integrated_gradients_attribution = 2;

Returns
Type Description
boolean

Whether the integratedGradientsAttribution field is set.

hasOutputIndices()

publicbooleanhasOutputIndices()

If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining.

If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs.

Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).

.google.protobuf.ListValue output_indices = 5;

Returns
Type Description
boolean

Whether the outputIndices field is set.

hasSampledShapleyAttribution()

publicbooleanhasSampledShapleyAttribution()

An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.

.google.cloud.vertexai.v1.SampledShapleyAttribution sampled_shapley_attribution = 1;

Returns
Type Description
boolean

Whether the sampledShapleyAttribution field is set.

hasXraiAttribution()

publicbooleanhasXraiAttribution()

An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825

XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.

.google.cloud.vertexai.v1.XraiAttribution xrai_attribution = 3;

Returns
Type Description
boolean

Whether the xraiAttribution field is set.

internalGetFieldAccessorTable()

protectedGeneratedMessageV3.FieldAccessorTableinternalGetFieldAccessorTable()
Returns
Type Description
FieldAccessorTable
Overrides

isInitialized()

publicfinalbooleanisInitialized()
Returns
Type Description
boolean
Overrides

mergeExamples(Examples value)

publicExplanationParameters.BuildermergeExamples(Examplesvalue)

Example-based explanations that returns the nearest neighbors from the provided dataset.

.google.cloud.vertexai.v1.Examples examples = 7;

Parameter
Name Description
value Examples
Returns
Type Description
ExplanationParameters.Builder

mergeFrom(ExplanationParameters other)

publicExplanationParameters.BuildermergeFrom(ExplanationParametersother)
Parameter
Name Description
other ExplanationParameters
Returns
Type Description
ExplanationParameters.Builder

mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)

publicExplanationParameters.BuildermergeFrom(CodedInputStreaminput,ExtensionRegistryLiteextensionRegistry)
Parameters
Name Description
input CodedInputStream
extensionRegistry ExtensionRegistryLite
Returns
Type Description
ExplanationParameters.Builder
Overrides
Exceptions
Type Description
IOException

mergeFrom(Message other)

publicExplanationParameters.BuildermergeFrom(Messageother)
Parameter
Name Description
other Message
Returns
Type Description
ExplanationParameters.Builder
Overrides

mergeIntegratedGradientsAttribution(IntegratedGradientsAttribution value)

publicExplanationParameters.BuildermergeIntegratedGradientsAttribution(IntegratedGradientsAttributionvalue)

An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365

.google.cloud.vertexai.v1.IntegratedGradientsAttribution integrated_gradients_attribution = 2;

Parameter
Name Description
value IntegratedGradientsAttribution
Returns
Type Description
ExplanationParameters.Builder

mergeOutputIndices(ListValue value)

publicExplanationParameters.BuildermergeOutputIndices(ListValuevalue)

If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining.

If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs.

Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).

.google.protobuf.ListValue output_indices = 5;

Parameter
Name Description
value ListValue
Returns
Type Description
ExplanationParameters.Builder

mergeSampledShapleyAttribution(SampledShapleyAttribution value)

publicExplanationParameters.BuildermergeSampledShapleyAttribution(SampledShapleyAttributionvalue)

An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.

.google.cloud.vertexai.v1.SampledShapleyAttribution sampled_shapley_attribution = 1;

Parameter
Name Description
value SampledShapleyAttribution
Returns
Type Description
ExplanationParameters.Builder

mergeUnknownFields(UnknownFieldSet unknownFields)

publicfinalExplanationParameters.BuildermergeUnknownFields(UnknownFieldSetunknownFields)
Parameter
Name Description
unknownFields UnknownFieldSet
Returns
Type Description
ExplanationParameters.Builder
Overrides

mergeXraiAttribution(XraiAttribution value)

publicExplanationParameters.BuildermergeXraiAttribution(XraiAttributionvalue)

An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825

XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.

.google.cloud.vertexai.v1.XraiAttribution xrai_attribution = 3;

Parameter
Name Description
value XraiAttribution
Returns
Type Description
ExplanationParameters.Builder

setExamples(Examples value)

publicExplanationParameters.BuildersetExamples(Examplesvalue)

Example-based explanations that returns the nearest neighbors from the provided dataset.

.google.cloud.vertexai.v1.Examples examples = 7;

Parameter
Name Description
value Examples
Returns
Type Description
ExplanationParameters.Builder

setExamples(Examples.Builder builderForValue)

publicExplanationParameters.BuildersetExamples(Examples.BuilderbuilderForValue)

Example-based explanations that returns the nearest neighbors from the provided dataset.

.google.cloud.vertexai.v1.Examples examples = 7;

Parameter
Name Description
builderForValue Examples.Builder
Returns
Type Description
ExplanationParameters.Builder

setField(Descriptors.FieldDescriptor field, Object value)

publicExplanationParameters.BuildersetField(Descriptors.FieldDescriptorfield,Objectvalue)
Parameters
Name Description
field FieldDescriptor
value Object
Returns
Type Description
ExplanationParameters.Builder
Overrides

setIntegratedGradientsAttribution(IntegratedGradientsAttribution value)

publicExplanationParameters.BuildersetIntegratedGradientsAttribution(IntegratedGradientsAttributionvalue)

An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365

.google.cloud.vertexai.v1.IntegratedGradientsAttribution integrated_gradients_attribution = 2;

Parameter
Name Description
value IntegratedGradientsAttribution
Returns
Type Description
ExplanationParameters.Builder

setIntegratedGradientsAttribution(IntegratedGradientsAttribution.Builder builderForValue)

publicExplanationParameters.BuildersetIntegratedGradientsAttribution(IntegratedGradientsAttribution.BuilderbuilderForValue)

An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365

.google.cloud.vertexai.v1.IntegratedGradientsAttribution integrated_gradients_attribution = 2;

Parameter
Name Description
builderForValue IntegratedGradientsAttribution.Builder
Returns
Type Description
ExplanationParameters.Builder

setOutputIndices(ListValue value)

publicExplanationParameters.BuildersetOutputIndices(ListValuevalue)

If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining.

If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs.

Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).

.google.protobuf.ListValue output_indices = 5;

Parameter
Name Description
value ListValue
Returns
Type Description
ExplanationParameters.Builder

setOutputIndices(ListValue.Builder builderForValue)

publicExplanationParameters.BuildersetOutputIndices(ListValue.BuilderbuilderForValue)

If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining.

If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs.

Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).

.google.protobuf.ListValue output_indices = 5;

Parameter
Name Description
builderForValue Builder
Returns
Type Description
ExplanationParameters.Builder

setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)

publicExplanationParameters.BuildersetRepeatedField(Descriptors.FieldDescriptorfield,intindex,Objectvalue)
Parameters
Name Description
field FieldDescriptor
index int
value Object
Returns
Type Description
ExplanationParameters.Builder
Overrides

setSampledShapleyAttribution(SampledShapleyAttribution value)

publicExplanationParameters.BuildersetSampledShapleyAttribution(SampledShapleyAttributionvalue)

An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.

.google.cloud.vertexai.v1.SampledShapleyAttribution sampled_shapley_attribution = 1;

Parameter
Name Description
value SampledShapleyAttribution
Returns
Type Description
ExplanationParameters.Builder

setSampledShapleyAttribution(SampledShapleyAttribution.Builder builderForValue)

publicExplanationParameters.BuildersetSampledShapleyAttribution(SampledShapleyAttribution.BuilderbuilderForValue)

An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.

.google.cloud.vertexai.v1.SampledShapleyAttribution sampled_shapley_attribution = 1;

Parameter
Name Description
builderForValue SampledShapleyAttribution.Builder
Returns
Type Description
ExplanationParameters.Builder

setTopK(int value)

publicExplanationParameters.BuildersetTopK(intvalue)

If populated, returns attributions for top K indices of outputs (defaults to 1). Only applies to Models that predicts more than one outputs (e,g, multi-class Models). When set to -1, returns explanations for all outputs.

int32 top_k = 4;

Parameter
Name Description
value int

The topK to set.

Returns
Type Description
ExplanationParameters.Builder

This builder for chaining.

setUnknownFields(UnknownFieldSet unknownFields)

publicfinalExplanationParameters.BuildersetUnknownFields(UnknownFieldSetunknownFields)
Parameter
Name Description
unknownFields UnknownFieldSet
Returns
Type Description
ExplanationParameters.Builder
Overrides

setXraiAttribution(XraiAttribution value)

publicExplanationParameters.BuildersetXraiAttribution(XraiAttributionvalue)

An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825

XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.

.google.cloud.vertexai.v1.XraiAttribution xrai_attribution = 3;

Parameter
Name Description
value XraiAttribution
Returns
Type Description
ExplanationParameters.Builder

setXraiAttribution(XraiAttribution.Builder builderForValue)

publicExplanationParameters.BuildersetXraiAttribution(XraiAttribution.BuilderbuilderForValue)

An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825

XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.

.google.cloud.vertexai.v1.XraiAttribution xrai_attribution = 3;

Parameter
Name Description
builderForValue XraiAttribution.Builder
Returns
Type Description
ExplanationParameters.Builder

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2025年11月19日 UTC.