Class ExplanationMetadata.InputMetadata (0.5.0)

publicstaticfinalclass ExplanationMetadata.InputMetadataextendsGeneratedMessageV3implementsExplanationMetadata.InputMetadataOrBuilder

Metadata of the input of a feature.

Fields other than InputMetadata.input_baselines are applicable only for Models that are using Vertex AI-provided images for Tensorflow.

Protobuf type google.cloud.vertexai.v1.ExplanationMetadata.InputMetadata

Inheritance

Object > AbstractMessageLite<MessageType,BuilderType> > AbstractMessage > GeneratedMessageV3 > ExplanationMetadata.InputMetadata

Inherited Members

com.google.protobuf.GeneratedMessageV3.<ListT>makeMutableCopy(ListT)
com.google.protobuf.GeneratedMessageV3.<ListT>makeMutableCopy(ListT,int)
com.google.protobuf.GeneratedMessageV3.<T>emptyList(java.lang.Class<T>)
com.google.protobuf.GeneratedMessageV3.internalGetMapFieldReflection(int)

Static Fields

DENSE_SHAPE_TENSOR_NAME_FIELD_NUMBER

publicstaticfinalintDENSE_SHAPE_TENSOR_NAME_FIELD_NUMBER
Field Value
Type Description
int

ENCODED_BASELINES_FIELD_NUMBER

publicstaticfinalintENCODED_BASELINES_FIELD_NUMBER
Field Value
Type Description
int

ENCODED_TENSOR_NAME_FIELD_NUMBER

publicstaticfinalintENCODED_TENSOR_NAME_FIELD_NUMBER
Field Value
Type Description
int

ENCODING_FIELD_NUMBER

publicstaticfinalintENCODING_FIELD_NUMBER
Field Value
Type Description
int

FEATURE_VALUE_DOMAIN_FIELD_NUMBER

publicstaticfinalintFEATURE_VALUE_DOMAIN_FIELD_NUMBER
Field Value
Type Description
int

GROUP_NAME_FIELD_NUMBER

publicstaticfinalintGROUP_NAME_FIELD_NUMBER
Field Value
Type Description
int

INDEX_FEATURE_MAPPING_FIELD_NUMBER

publicstaticfinalintINDEX_FEATURE_MAPPING_FIELD_NUMBER
Field Value
Type Description
int

INDICES_TENSOR_NAME_FIELD_NUMBER

publicstaticfinalintINDICES_TENSOR_NAME_FIELD_NUMBER
Field Value
Type Description
int

INPUT_BASELINES_FIELD_NUMBER

publicstaticfinalintINPUT_BASELINES_FIELD_NUMBER
Field Value
Type Description
int

INPUT_TENSOR_NAME_FIELD_NUMBER

publicstaticfinalintINPUT_TENSOR_NAME_FIELD_NUMBER
Field Value
Type Description
int

MODALITY_FIELD_NUMBER

publicstaticfinalintMODALITY_FIELD_NUMBER
Field Value
Type Description
int

VISUALIZATION_FIELD_NUMBER

publicstaticfinalintVISUALIZATION_FIELD_NUMBER
Field Value
Type Description
int

Static Methods

getDefaultInstance()

publicstaticExplanationMetadata.InputMetadatagetDefaultInstance()
Returns
Type Description
ExplanationMetadata.InputMetadata

getDescriptor()

publicstaticfinalDescriptors.DescriptorgetDescriptor()
Returns
Type Description
Descriptor

newBuilder()

publicstaticExplanationMetadata.InputMetadata.BuildernewBuilder()
Returns
Type Description
ExplanationMetadata.InputMetadata.Builder

newBuilder(ExplanationMetadata.InputMetadata prototype)

publicstaticExplanationMetadata.InputMetadata.BuildernewBuilder(ExplanationMetadata.InputMetadataprototype)
Parameter
Name Description
prototype ExplanationMetadata.InputMetadata
Returns
Type Description
ExplanationMetadata.InputMetadata.Builder

parseDelimitedFrom(InputStream input)

publicstaticExplanationMetadata.InputMetadataparseDelimitedFrom(InputStreaminput)
Parameter
Name Description
input InputStream
Returns
Type Description
ExplanationMetadata.InputMetadata
Exceptions
Type Description
IOException

parseDelimitedFrom(InputStream input, ExtensionRegistryLite extensionRegistry)

publicstaticExplanationMetadata.InputMetadataparseDelimitedFrom(InputStreaminput,ExtensionRegistryLiteextensionRegistry)
Parameters
Name Description
input InputStream
extensionRegistry ExtensionRegistryLite
Returns
Type Description
ExplanationMetadata.InputMetadata
Exceptions
Type Description
IOException

parseFrom(byte[] data)

publicstaticExplanationMetadata.InputMetadataparseFrom(byte[]data)
Parameter
Name Description
data byte[]
Returns
Type Description
ExplanationMetadata.InputMetadata
Exceptions
Type Description
InvalidProtocolBufferException

parseFrom(byte[] data, ExtensionRegistryLite extensionRegistry)

publicstaticExplanationMetadata.InputMetadataparseFrom(byte[]data,ExtensionRegistryLiteextensionRegistry)
Parameters
Name Description
data byte[]
extensionRegistry ExtensionRegistryLite
Returns
Type Description
ExplanationMetadata.InputMetadata
Exceptions
Type Description
InvalidProtocolBufferException

parseFrom(ByteString data)

publicstaticExplanationMetadata.InputMetadataparseFrom(ByteStringdata)
Parameter
Name Description
data ByteString
Returns
Type Description
ExplanationMetadata.InputMetadata
Exceptions
Type Description
InvalidProtocolBufferException

parseFrom(ByteString data, ExtensionRegistryLite extensionRegistry)

publicstaticExplanationMetadata.InputMetadataparseFrom(ByteStringdata,ExtensionRegistryLiteextensionRegistry)
Parameters
Name Description
data ByteString
extensionRegistry ExtensionRegistryLite
Returns
Type Description
ExplanationMetadata.InputMetadata
Exceptions
Type Description
InvalidProtocolBufferException

parseFrom(CodedInputStream input)

publicstaticExplanationMetadata.InputMetadataparseFrom(CodedInputStreaminput)
Parameter
Name Description
input CodedInputStream
Returns
Type Description
ExplanationMetadata.InputMetadata
Exceptions
Type Description
IOException

parseFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)

publicstaticExplanationMetadata.InputMetadataparseFrom(CodedInputStreaminput,ExtensionRegistryLiteextensionRegistry)
Parameters
Name Description
input CodedInputStream
extensionRegistry ExtensionRegistryLite
Returns
Type Description
ExplanationMetadata.InputMetadata
Exceptions
Type Description
IOException

parseFrom(InputStream input)

publicstaticExplanationMetadata.InputMetadataparseFrom(InputStreaminput)
Parameter
Name Description
input InputStream
Returns
Type Description
ExplanationMetadata.InputMetadata
Exceptions
Type Description
IOException

parseFrom(InputStream input, ExtensionRegistryLite extensionRegistry)

publicstaticExplanationMetadata.InputMetadataparseFrom(InputStreaminput,ExtensionRegistryLiteextensionRegistry)
Parameters
Name Description
input InputStream
extensionRegistry ExtensionRegistryLite
Returns
Type Description
ExplanationMetadata.InputMetadata
Exceptions
Type Description
IOException

parseFrom(ByteBuffer data)

publicstaticExplanationMetadata.InputMetadataparseFrom(ByteBufferdata)
Parameter
Name Description
data ByteBuffer
Returns
Type Description
ExplanationMetadata.InputMetadata
Exceptions
Type Description
InvalidProtocolBufferException

parseFrom(ByteBuffer data, ExtensionRegistryLite extensionRegistry)

publicstaticExplanationMetadata.InputMetadataparseFrom(ByteBufferdata,ExtensionRegistryLiteextensionRegistry)
Parameters
Name Description
data ByteBuffer
extensionRegistry ExtensionRegistryLite
Returns
Type Description
ExplanationMetadata.InputMetadata
Exceptions
Type Description
InvalidProtocolBufferException

parser()

publicstaticParser<ExplanationMetadata.InputMetadata>parser()
Returns
Type Description
Parser<InputMetadata>

Methods

equals(Object obj)

publicbooleanequals(Objectobj)
Parameter
Name Description
obj Object
Returns
Type Description
boolean
Overrides

getDefaultInstanceForType()

publicExplanationMetadata.InputMetadatagetDefaultInstanceForType()
Returns
Type Description
ExplanationMetadata.InputMetadata

getDenseShapeTensorName()

publicStringgetDenseShapeTensorName()

Specifies the shape of the values of the input if the input is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.

string dense_shape_tensor_name = 7;

Returns
Type Description
String

The denseShapeTensorName.

getDenseShapeTensorNameBytes()

publicByteStringgetDenseShapeTensorNameBytes()

Specifies the shape of the values of the input if the input is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.

string dense_shape_tensor_name = 7;

Returns
Type Description
ByteString

The bytes for denseShapeTensorName.

getEncodedBaselines(int index)

publicValuegetEncodedBaselines(intindex)

A list of baselines for the encoded tensor.

The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.

repeated .google.protobuf.Value encoded_baselines = 10;

Parameter
Name Description
index int
Returns
Type Description
Value

getEncodedBaselinesCount()

publicintgetEncodedBaselinesCount()

A list of baselines for the encoded tensor.

The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.

repeated .google.protobuf.Value encoded_baselines = 10;

Returns
Type Description
int

getEncodedBaselinesList()

publicList<Value>getEncodedBaselinesList()

A list of baselines for the encoded tensor.

The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.

repeated .google.protobuf.Value encoded_baselines = 10;

Returns
Type Description
List<Value>

getEncodedBaselinesOrBuilder(int index)

publicValueOrBuildergetEncodedBaselinesOrBuilder(intindex)

A list of baselines for the encoded tensor.

The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.

repeated .google.protobuf.Value encoded_baselines = 10;

Parameter
Name Description
index int
Returns
Type Description
ValueOrBuilder

getEncodedBaselinesOrBuilderList()

publicList<?extendsValueOrBuilder>getEncodedBaselinesOrBuilderList()

A list of baselines for the encoded tensor.

The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.

repeated .google.protobuf.Value encoded_baselines = 10;

Returns
Type Description
List<? extends com.google.protobuf.ValueOrBuilder>

getEncodedTensorName()

publicStringgetEncodedTensorName()

Encoded tensor is a transformation of the input tensor. Must be provided if choosing Integrated Gradients attribution or XRAI attribution and the input tensor is not differentiable.

An encoded tensor is generated if the input tensor is encoded by a lookup table.

string encoded_tensor_name = 9;

Returns
Type Description
String

The encodedTensorName.

getEncodedTensorNameBytes()

publicByteStringgetEncodedTensorNameBytes()

Encoded tensor is a transformation of the input tensor. Must be provided if choosing Integrated Gradients attribution or XRAI attribution and the input tensor is not differentiable.

An encoded tensor is generated if the input tensor is encoded by a lookup table.

string encoded_tensor_name = 9;

Returns
Type Description
ByteString

The bytes for encodedTensorName.

getEncoding()

publicExplanationMetadata.InputMetadata.EncodinggetEncoding()

Defines how the feature is encoded into the input tensor. Defaults to IDENTITY.

.google.cloud.vertexai.v1.ExplanationMetadata.InputMetadata.Encoding encoding = 3;

Returns
Type Description
ExplanationMetadata.InputMetadata.Encoding

The encoding.

getEncodingValue()

publicintgetEncodingValue()

Defines how the feature is encoded into the input tensor. Defaults to IDENTITY.

.google.cloud.vertexai.v1.ExplanationMetadata.InputMetadata.Encoding encoding = 3;

Returns
Type Description
int

The enum numeric value on the wire for encoding.

getFeatureValueDomain()

publicExplanationMetadata.InputMetadata.FeatureValueDomaingetFeatureValueDomain()

The domain details of the input feature value. Like min/max, original mean or standard deviation if normalized.

.google.cloud.vertexai.v1.ExplanationMetadata.InputMetadata.FeatureValueDomain feature_value_domain = 5;

Returns
Type Description
ExplanationMetadata.InputMetadata.FeatureValueDomain

The featureValueDomain.

getFeatureValueDomainOrBuilder()

publicExplanationMetadata.InputMetadata.FeatureValueDomainOrBuildergetFeatureValueDomainOrBuilder()

The domain details of the input feature value. Like min/max, original mean or standard deviation if normalized.

.google.cloud.vertexai.v1.ExplanationMetadata.InputMetadata.FeatureValueDomain feature_value_domain = 5;

Returns
Type Description
ExplanationMetadata.InputMetadata.FeatureValueDomainOrBuilder

getGroupName()

publicStringgetGroupName()

Name of the group that the input belongs to. Features with the same group name will be treated as one feature when computing attributions. Features grouped together can have different shapes in value. If provided, there will be one single attribution generated in Attribution.feature_attributions, keyed by the group name.

string group_name = 12;

Returns
Type Description
String

The groupName.

getGroupNameBytes()

publicByteStringgetGroupNameBytes()

Name of the group that the input belongs to. Features with the same group name will be treated as one feature when computing attributions. Features grouped together can have different shapes in value. If provided, there will be one single attribution generated in Attribution.feature_attributions, keyed by the group name.

string group_name = 12;

Returns
Type Description
ByteString

The bytes for groupName.

getIndexFeatureMapping(int index)

publicStringgetIndexFeatureMapping(intindex)

A list of feature names for each index in the input tensor. Required when the input InputMetadata.encoding is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.

repeated string index_feature_mapping = 8;

Parameter
Name Description
index int

The index of the element to return.

Returns
Type Description
String

The indexFeatureMapping at the given index.

getIndexFeatureMappingBytes(int index)

publicByteStringgetIndexFeatureMappingBytes(intindex)

A list of feature names for each index in the input tensor. Required when the input InputMetadata.encoding is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.

repeated string index_feature_mapping = 8;

Parameter
Name Description
index int

The index of the value to return.

Returns
Type Description
ByteString

The bytes of the indexFeatureMapping at the given index.

getIndexFeatureMappingCount()

publicintgetIndexFeatureMappingCount()

A list of feature names for each index in the input tensor. Required when the input InputMetadata.encoding is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.

repeated string index_feature_mapping = 8;

Returns
Type Description
int

The count of indexFeatureMapping.

getIndexFeatureMappingList()

publicProtocolStringListgetIndexFeatureMappingList()

A list of feature names for each index in the input tensor. Required when the input InputMetadata.encoding is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.

repeated string index_feature_mapping = 8;

Returns
Type Description
ProtocolStringList

A list containing the indexFeatureMapping.

getIndicesTensorName()

publicStringgetIndicesTensorName()

Specifies the index of the values of the input tensor. Required when the input tensor is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.

string indices_tensor_name = 6;

Returns
Type Description
String

The indicesTensorName.

getIndicesTensorNameBytes()

publicByteStringgetIndicesTensorNameBytes()

Specifies the index of the values of the input tensor. Required when the input tensor is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.

string indices_tensor_name = 6;

Returns
Type Description
ByteString

The bytes for indicesTensorName.

getInputBaselines(int index)

publicValuegetInputBaselines(intindex)

Baseline inputs for this feature.

If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in Attribution.feature_attributions.

For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor.

For custom images, the element of the baselines must be in the same format as the feature's input in the instance[]. The schema of any single instance may be specified via Endpoint's DeployedModels' Model's PredictSchemata's instance_schema_uri.

repeated .google.protobuf.Value input_baselines = 1;

Parameter
Name Description
index int
Returns
Type Description
Value

getInputBaselinesCount()

publicintgetInputBaselinesCount()

Baseline inputs for this feature.

If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in Attribution.feature_attributions.

For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor.

For custom images, the element of the baselines must be in the same format as the feature's input in the instance[]. The schema of any single instance may be specified via Endpoint's DeployedModels' Model's PredictSchemata's instance_schema_uri.

repeated .google.protobuf.Value input_baselines = 1;

Returns
Type Description
int

getInputBaselinesList()

publicList<Value>getInputBaselinesList()

Baseline inputs for this feature.

If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in Attribution.feature_attributions.

For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor.

For custom images, the element of the baselines must be in the same format as the feature's input in the instance[]. The schema of any single instance may be specified via Endpoint's DeployedModels' Model's PredictSchemata's instance_schema_uri.

repeated .google.protobuf.Value input_baselines = 1;

Returns
Type Description
List<Value>

getInputBaselinesOrBuilder(int index)

publicValueOrBuildergetInputBaselinesOrBuilder(intindex)

Baseline inputs for this feature.

If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in Attribution.feature_attributions.

For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor.

For custom images, the element of the baselines must be in the same format as the feature's input in the instance[]. The schema of any single instance may be specified via Endpoint's DeployedModels' Model's PredictSchemata's instance_schema_uri.

repeated .google.protobuf.Value input_baselines = 1;

Parameter
Name Description
index int
Returns
Type Description
ValueOrBuilder

getInputBaselinesOrBuilderList()

publicList<?extendsValueOrBuilder>getInputBaselinesOrBuilderList()

Baseline inputs for this feature.

If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in Attribution.feature_attributions.

For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor.

For custom images, the element of the baselines must be in the same format as the feature's input in the instance[]. The schema of any single instance may be specified via Endpoint's DeployedModels' Model's PredictSchemata's instance_schema_uri.

repeated .google.protobuf.Value input_baselines = 1;

Returns
Type Description
List<? extends com.google.protobuf.ValueOrBuilder>

getInputTensorName()

publicStringgetInputTensorName()

Name of the input tensor for this feature. Required and is only applicable to Vertex AI-provided images for Tensorflow.

string input_tensor_name = 2;

Returns
Type Description
String

The inputTensorName.

getInputTensorNameBytes()

publicByteStringgetInputTensorNameBytes()

Name of the input tensor for this feature. Required and is only applicable to Vertex AI-provided images for Tensorflow.

string input_tensor_name = 2;

Returns
Type Description
ByteString

The bytes for inputTensorName.

getModality()

publicStringgetModality()

Modality of the feature. Valid values are: numeric, image. Defaults to numeric.

string modality = 4;

Returns
Type Description
String

The modality.

getModalityBytes()

publicByteStringgetModalityBytes()

Modality of the feature. Valid values are: numeric, image. Defaults to numeric.

string modality = 4;

Returns
Type Description
ByteString

The bytes for modality.

getParserForType()

publicParser<ExplanationMetadata.InputMetadata>getParserForType()
Returns
Type Description
Parser<InputMetadata>
Overrides

getSerializedSize()

publicintgetSerializedSize()
Returns
Type Description
int
Overrides

getVisualization()

publicExplanationMetadata.InputMetadata.VisualizationgetVisualization()

Visualization configurations for image explanation.

.google.cloud.vertexai.v1.ExplanationMetadata.InputMetadata.Visualization visualization = 11;

Returns
Type Description
ExplanationMetadata.InputMetadata.Visualization

The visualization.

getVisualizationOrBuilder()

publicExplanationMetadata.InputMetadata.VisualizationOrBuildergetVisualizationOrBuilder()

Visualization configurations for image explanation.

.google.cloud.vertexai.v1.ExplanationMetadata.InputMetadata.Visualization visualization = 11;

Returns
Type Description
ExplanationMetadata.InputMetadata.VisualizationOrBuilder

hasFeatureValueDomain()

publicbooleanhasFeatureValueDomain()

The domain details of the input feature value. Like min/max, original mean or standard deviation if normalized.

.google.cloud.vertexai.v1.ExplanationMetadata.InputMetadata.FeatureValueDomain feature_value_domain = 5;

Returns
Type Description
boolean

Whether the featureValueDomain field is set.

hasVisualization()

publicbooleanhasVisualization()

Visualization configurations for image explanation.

.google.cloud.vertexai.v1.ExplanationMetadata.InputMetadata.Visualization visualization = 11;

Returns
Type Description
boolean

Whether the visualization field is set.

hashCode()

publicinthashCode()
Returns
Type Description
int
Overrides

internalGetFieldAccessorTable()

protectedGeneratedMessageV3.FieldAccessorTableinternalGetFieldAccessorTable()
Returns
Type Description
FieldAccessorTable
Overrides

isInitialized()

publicfinalbooleanisInitialized()
Returns
Type Description
boolean
Overrides

newBuilderForType()

publicExplanationMetadata.InputMetadata.BuildernewBuilderForType()
Returns
Type Description
ExplanationMetadata.InputMetadata.Builder

newBuilderForType(GeneratedMessageV3.BuilderParent parent)

protectedExplanationMetadata.InputMetadata.BuildernewBuilderForType(GeneratedMessageV3.BuilderParentparent)
Parameter
Name Description
parent BuilderParent
Returns
Type Description
ExplanationMetadata.InputMetadata.Builder
Overrides

newInstance(GeneratedMessageV3.UnusedPrivateParameter unused)

protectedObjectnewInstance(GeneratedMessageV3.UnusedPrivateParameterunused)
Parameter
Name Description
unused UnusedPrivateParameter
Returns
Type Description
Object
Overrides

toBuilder()

publicExplanationMetadata.InputMetadata.BuildertoBuilder()
Returns
Type Description
ExplanationMetadata.InputMetadata.Builder

writeTo(CodedOutputStream output)

publicvoidwriteTo(CodedOutputStreamoutput)
Parameter
Name Description
output CodedOutputStream
Overrides
Exceptions
Type Description
IOException

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2025年11月19日 UTC.