[フレーム]
1 - 40 件 / 66件
東京大学がちょっとびっくりするくらいの超良質な教材を無料公開していたので、まとめました Python入門講座 東大のPython入門が無料公開されています。scikit-learnといった機械学習関連についても説明されています。ホントいいです Pythonプログラミング入門 東京大学 数理・情報教育研究センター: utokyo-ipp.github.io 東大のPython本も非常にオススメです Pythonによるプログラミング入門 東京大学教養学部テキスト: アルゴリズムと情報科学の基礎を学ぶ https://amzn.to/2oSw4ws Pythonプログラミング入門 - 東京大学 数理・情報教育研究センター Google Colabで学習出来るようになっています。練習問題も豊富です https://colab.research.google.com/github/utokyo-ip
Google が公開している、より良いデータ分析のためのガイドブック「Good Data Analysis」で、データ分析の要所が簡潔にまとめられていて感動した 2022年03月08日 Google の非公式ブログで、The Unofficial Google Data Science Blog というデータサイエンスをテーマにしたブログがある。 その中で、 Practical advice for analysis of large, complex data sets の記事を元にして作られた Google Developers Guides: Machine Learning Guides > Good Data Analysis を昨日見かけて読んでいたら素晴らしいドキュメントだったので、ここでその感動を共有したかったので筆をとったしだい。 Good Data Analysis の概
先日、データ解析のセミナーを開催しました。 未経験の方でも、2時間で予測モデルを作成することができるハンズオンセミナーでした。 好評だったので、その内容をYouTubeにまとめたのでご興味ある方はご覧ください。 このハンズオンセミナーで予測モデルの作り方を知った友人がchatGPTにアドバイスをもらって、データサイエンスのコンペティションサイトに応募したところ、上位6.5%に入ることができたという報告を受け、驚愕しました。 chatGPTを上手く使えば素人がプロに勝つことも十分できるのだなと実感しました。 友人が参加したデータサイエンスのコンペは、SIGNATEの糖尿病予測問題でした。 以下のような進め方をしたとのことでした。 まず、問題の概要を説明して、どのように進めていけば良いかを確認したそうです。 そうすると、chatGPTからデータサイエンスの問題を解くための手順を一覧化してくれて
はじめに 当記事を開いてくださりありがとうございます。私は表題の通り、私は一般にメガベンチャーと呼ばれる自社開発企業で機械学習エンジニアとして勤務しはじめてからわずか半年で、鬱を発症し退職することになったものです。この会社は待遇も良く、社風としても労働者思いのとても素晴らしい会社であったと私自身振り返って思います。 そんな会社に運よく入社することができた私ですが、わずか半年で「鬱状態」と心療内科から診断を受け休職し、会社制度により退職することになりました。「え?そんなに素晴らしい環境なのにメンタル弱すぎでは?」と思われる方もいらっしゃることでしょう。返す言葉が全くありません。おっしゃる通りです。 しかし同時に、「何故鬱になったの?」と思われる方もいらっしゃるのではないでしょうか。本記事ではこの点について鬱を発症した本人の目線から「どうしてそんなことが起きてしまったのか」という点について考察
はじめに 本稿では分析用クエリをスラスラ書けるようになるまでの勉強方法や書き方のコツをまとめてみました。具体的には、自分がクエリを書けるようになるまでに利用した教材と、普段クエリを書く際に意識していることを言語化しています。 想定読者として、SQLをガンガン書く予定の新卒のデータアナリスト/データサイエンティストを想定しています。 勉強方法 基礎の基礎をサッと座学で勉強してから、実践教材で実際にクエリを書くのが望ましいです。 実務で使える分析クエリを書けるようになるためには、実務経験を積むのが一番良いですが、だからといって座学を御座なりにして良いというわけではありません。SQLに自信がない人は、一度基礎に立ち返って文法の理解度を確認した方が良いと思います。 書籍 SQL 第2版: ゼロからはじめるデータベース操作 前提として、SQLに関する書籍の多くがデータベース運用/構築に関する書籍がほ
以前こんな記事を書いたことがあります。 「社員全員Excel経営」で名高い、ワークマン社のサクセスストーリーを論評したものです。2012年にCIOに就任した土屋哲雄常務のリーダーシップのもと、取引データの完全電子化を皮切りに「全社員がExcelを使いこなして数字とデータで経営する」戦略へと移行し、社内のExcelデータ分析資格を一定以上取得しないと管理職に昇進できないとか、はたまた幹部クラスの企画・経営会議ではデータに基づかない議論や提案は相手にすらされないとか、「Excelを社員全員が使えるようになるだけでもここまで企業カルチャーは変わり得るのか」という事例のオンパレードで、関連記事や書籍を読んでいて舌を巻いたのを覚えています。まさしく「ワークマンのすごいデータ活用」だったのです。 一方、個人的に強く印象を受けたのが土屋常務が様々なところでコメントしていた「我が社には突出したデータサイエ
この度、3年半に渡って勤めたメルカリを2022年5月に退職し、この夏からロンドンのMetaにSenior Machine Learning Engineerとして転職することが決まりました!わいわい✌('ω')。その過程で、東京およびロンドンのBig Tech合計5社を数ヶ月かけて対策をし面接に臨んだので、そこで得たノウハウをここで共有できたらと思います。面接を受ける際にNDA(Non Disclosure Agreement)にサインするので具体的な面接の詳細には触れられませんが、伝えられる範囲でできる限り記述しています。 また、Metaから最終的に提示されたオファー条件を最後に記載してあります。なにぶん日本においては給与の話は燃えやすいということもあり、その部分だけ某日本の有名エンジニアに倣って有料にしてあるのですが、ご興味のある方は是非ご購入いただければと思います(1コイン分の金額で
(『IT Text 自然語処理の基礎』より) 3ヶ月ほど前に空前のLLMブームについて概観する記事を書きましたが、それ以降も世間のLLMに対する狂騒ぶりは収まるどころかますます拍車がかかるという有様で、あまつさえ僕自身の仕事における日常業務にもじわじわと影響が及びつつあり、今後も良きにつけ悪しきにつけLLMと共生し続ける必要がありそうだと感じている今日この頃です。 そんな猫も杓子もLLMに群がるが如き空前のブームを受けて、エンジニアやデータ分析職の方々の中には「LLMに興味はあるんだけど世の中にあまりにも多くのLLM関連コンテンツが溢れ返っていて何から手をつけたら良いのか分からない」という向きもあるように見受けられます。そこで、僕も断じてLLM以下生成AIの専門家などではないのですが、個人的に「このテキストを読めばLLM時代を生き抜くことが出来そうだ」と感じた書籍を、全くの独断と偏見で3冊
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? Appleの移動データを加工したらわかった東京の厳しい現実 こんにちは、Exploratoryの白戸です。 Appleは新型コロナウイルスの対策支援として、Appleマップでの経路検索をもとにした移動傾向のデータを公開しています。ところが、残念ながらこのデータはそのままでは簡単に可視化できるようなフォーマットになっておらず、ちょっとした加工を行う必要があります。 しかし逆に、加工の仕方さえわかってしまえばそれぞれの都市や地域の移動データを可視化することで、恐怖を煽るばかりのマスコミからは見えてこない現状を理解することができるようになりま
先日、Quora日本語版でこんなやり取りがありました。 基本的にはここで述べた通りの話なのですが、折角なのでブログの方でも記事としてちょっとまとめておこうと思います。題して「何故データサイエンティストになりたかったら、きちんと体系立てて学ばなければならないのか」というお話です。 問題意識としては毎回引き合いに出しているこちらの過去記事で論じられているような「ワナビーデータサイエンティスト」たちをどう導くべきかという議論が以前から各所であり、それらを念頭に置いています。なお毎度のことで恐縮ですが、僕も基本的には独学一本の素人ですので以下の記述に誤りや説明不足の点などあればご指摘くださると幸いです。 一般的なソフトウェア開発と、統計分析や機械学習との違い 統計分析や機械学習を仕事にするなら、その「振る舞い」を体系立てて学ぶ必要がある きちんと体系立てて学ばなかった結果として陥りがちな罠 余談
2022年08月27日 データ抽出に特化したAirbyteによるEL(T) 環境構築の実践 データ基盤 Airbyte ELT こんにちは。今回は、データ基盤の構築の一部を実際に体験してみたいと思います。 データ基盤を作成するにあたり、まずは、社内に眠る様々なデータを集めてくる必要があります。前回の記事では、その機能を「収集」と紹介していました。 データ基盤とは何か... データ基盤 データ分析基盤 実践 2022年08月18日 Metaflowでモデルの学習をpipeline化するまで MLOps Metaflow Pipeline 皆さんは「MLOps」について取り組んでいらっしゃるでしょうか。私は2018年頃からデータクレンジングや機械学習モデルの構築や運用をしてきましたが、当時の日本で私の耳にはMLOpsという言葉が入ってくることはありませんでした。 ただMLOpsの元となった「Dev...
はじめに Modern Data Stack ? Modern Data Stack の特徴やメリット、関連するトレンド データインフラのクラウドサービス化 / Data infrastructure as a service データ連携サービスの発展 ELT! ELT! ELT! Reverse ETL テンプレート化された SQL and YAML などによるデータの管理 セマンティックレイヤーの凋落と Headless BI 計算フレームワーク (Computation Frameworks) 分析プロセスの民主化、データガバナンスとデータメッシュの試み プロダクト組み込み用データサービス リアルタイム Analytics Engineer の登場 各社ファウンダーが考える Modern Data Stack さいごに Further Readings はじめに Modern Dat
それぞれのカテゴリーに対して、年初からその日までの支出合計額、予算に占める割合、予算の残りなどを詳細に追跡する。 右のチャートには、支出の内訳が別のビジュアルで示されている。四角形が大きければ大きいほど、支出が多いということだ。「罪悪感のある楽しみ(Guilty Pleasures)」や「アパートメント(Apartment)」という名の支出が予算において大きな比重を占めている一方で、「友人と社会(Friends / Social)」と「教育(Education)」は小さい、つまり予算に占める割合も少ないということだ。 ゴールドシュタイン氏は不健康な食品への出費を特に厳しく追跡している。退職後は健康を優先し、「ストレス食い」を減らすことに努めているからだ。 「アパートメントの家賃が、一般的な食費とともに、私の支出の大きな部分を占めている」とゴールドシュタイン氏はBusiness Inside
年間2,200名以上の社会人が受講する、データサイエンスを学ぶビジネススクール「datamix」。同スクールを運営する、株式会社データミックスのオンライントークイベント「データサイエンス業界の転職と副業の"今"」に、同社の立川裕之氏と福山耀平氏が登壇。データサイエンスを学んで独立した立川氏と、転職支援や副業の紹介を行っている福山氏が、データサイエンス業界の働き方について解説します。後編では、転職・副業における最大の強みや、転職の成功事例のパターンなどを紹介しています。 取締役に近いポジションなら、年収3,000万円以上も 福山耀平氏(以下、福山):ちょうど昨日、ある大手の損保企業の担当者と話していたら、データサイエンティストのチームの統括ができて、経営層としゃべれる人材を募集されていました。これはもちろんチームを率いた経験など、難易度は高くなるんですけど、取締役に近いポジションの仕事です。
本チュートリアルに関してのご質問は、SIGNATEにて開催中のコンペティションサイト( https://signate.jp/competitions/443 )のフォーラムにおきまして、新規のスレッド(ディスカッション)にてご質問していただけますと幸いです。 また、本チュートリアルに関してのご要望があれば、Githubリポジトリ( https://github.com/JapanExchangeGroup/J-Quants-Tutorial )の Issues からご意見をいただけますと幸いです。 (なお、投稿の際には、過去に同じご要望がないかご確認ください。) 2021年01月29日: 初版リリース 2021年02月05日: 誤字や表記の修正を中心に改良 2021年02月12日:
はじめに 株式会社ホクソエム常務取締役のタカヤナギ=サンです、データサイエンスや意思決定のプロ・経営をしています。 掲題の件、現在、某社さんと"機械学習における評価指標とビジネスの関係、および宇宙の全て"というタイトルの書籍を書いているのですが、 本記事のタイトルにあるような考え方については、論文・書籍などを数多く調査しても未だお目にかかることができず、これをいきなり書籍にしてAmazonレビューなどでフルボッコに叩かれて炎上して枕を涙で濡らすよりも、ある程度小出しにして様々な人々の意見を聞いた方が良いのではないかと思い独断で筆を取った次第です。 筋が良さそうなら論文にするのも良いと思っている。 「いや、そんなもん会社のBLOGに書くんじゃねーよ💢」という話があるかもしれないですが、ここは私の保有する会社なので何の問題もない、don't you? こういうビジネスを考えてみよう 「この人
気付いたらこの企画をやるようになってもう12年も経つわけですが、今年も懲りずに推薦書籍リストを書いてみようかと思います。 昨年との差異ですが、まず「ホットトピックス」枠を削りました。理由は単純で、データサイエンス分野も昨今の多種多様な分野に細分化されていく一方で、「誰もが追いかけるテーマ」が事実上空前の大ブーム下にある生成AIだけになってしまっているからです。このブログのスタンスとしては「生成AIにまつわる最先端のあれこれは他所様に任せる」という方針なので、生成AIのトレンドを取り上げないとなると必然的にホットトピックスもなくなるということで、今回は定番の書籍リストのみ若干の改訂を加えて記すこととします。 一方で、生成AIが普及してきたこともあって「定番」の書籍リストにも相応の入れ替わりがあります。これまた理由はシンプルで、「この程度の実装やコーディングなら生成AIに聞けば十分」というケー
こんにちは。デジタルテクノロジー統括部でアナリストをしているY・Nです。 パーソルキャリアのデジタルテクノロジー統括部は、一般社団法人データサイエンティスト協会が定める「データサイエンティストに求められるスキルセット」を基に、以下の3つのグループが組織されています。 ビジネスグループ アナリティクスグループ エンジニアグループ 出典:データサイエンティスト協会 これらの3グループが互いに連携しあい、AI(ここでは機械学習による予測モデルを指すことにします)によって様々な業務を自動化させたり、意思決定の補助に利用させるプロジェクトに取り組んでいます。 その際、「AIの判断根拠をどの程度(どの様に)見せれば良いか」ということが常にビジネスグループで議題に上がります。殊にAIの予測結果を人間(特に営業部門の人)が見た上で意思決定の補助として利用する場合に顕著で、判断根拠が表示されないブラックボッ
(Image by Pexels from Pixabay) 今年も恒例の推薦書籍リストの季節がやって参りました。......なのですが、昨年はCOVID-19の影響で*1データ分析業界及び隣接分野の新刊書を読む機会が減ってしまいましたので、例年に比べてラインナップの変更をほとんど検討しないままでリストアップしている点、予めご容赦いただければと思います。 そして今回の記事では、これまで以上に「実務家向け」「実践的」であることを重視しています。そのため昨年までのリストに比べて大幅に刷新されているカテゴリもあったりします。また、末尾に僕なんぞが選ぶよりもずっと優れた推薦書籍リストへのリンクも付しておきました。併せて参考にしていただけると幸いです。 初級向け5冊 総論 統計学 機械学習 中級向け8冊 統計学 機械学習 テーマ別14冊 PRML 機械学習の実践 Deep Learning 統計的因果推論
AI・機械学習チームの氏家 (@mowmow1259)です。 このブログはAI・機械学習チームブログリレー 8日目の記事です。 前日は高田さんによる「BETWEENに気をつけろ! BigQueryの日次集計で罠にハマった話」でした。 最近LLMによるVibe Codingが世間を賑わせています。 エムスリーでも積極的にコーディングエージェントの導入が進んでおり、かくいう私もClaude Code君がいないと生きていけない体にされてしまいました。 コーディングエージェントのおかげで典型的な開発タスクはかなり効率化されてきているものの、面倒なタスクもまだまだ残されています。 分析です。 前日の高田さんの記事にもある通りエムスリーではBigQueryにデータを集約していますが、BigQuery上のデータでぱっと集計したかったりなど、大体どのテーブルを見にいけばいいか想像がつくけど面倒だな。。みた
ChatGPTを使ってデータサイエンティストの生産性を爆上げする活用術をまとめました! また、データサイエンティストがChatGPTを活用するための記事をまとめているので、こちらもぜひ参考にしてみてください。 データ前処理 「ChatGPTを使用すると、「データを分析可能な形に前処理して」といった大雑把なリクエストに対しても、すんなりと対応し、データ前処理を行ってくれます。」 今のところ、大量のデータを前処理する際にChatGPTを利用する場合は、ChatGPTに実際の前処理を行わせるのではなく、前処理用のサンプルコードを教えてもらう方が良いでしょう。 ただし、近い将来にはCSVやExcelを直接アップロード&ダウンロード可能な「Code Interpreter」というプラグインが追加される予定とのことで、実務利用が大いに現実味を帯びると考えられます。 詳細は以下のページで紹介しています!
(Image by Dirk Wouters from Pixabay) この記事は毎年恒例のスキル要件記事の2021年版です。昨年版は以下のリンクからご覧ください。 今回は、試験的に「データアーキテクト」についても触れています(詳細は後述)。残り2つの職種については基本的な内容はそれほど大きくは変わっていませんが、先般公開した推薦書籍リスト記事の時と同じ変更点が一つだけあります。それは「機械学習エンジニアのスキル要件」は今回は想定していない(というか例示できない)という点です。これまた詳細は後述しますが、端的に言えば「分野ごとの細分化が過剰に進んでいる」という印象があるためです。 ということで、前回までとは違って「職種ごと」に定義とスキル要件(書けるようであれば)を挙げていくスタイルになっています。なお、言わずもがなですが以下に挙げる3職種の説明は僕個人のこれまでの経験や見聞や伝聞をもと
政党支持率を探る世論調査は、何を食べたいかを客に尋ねる食堂の店主に似ている。売り上げならば前日の伝票を見ればわかる。知りたいのは明日の注文だ。聞かれた方も「いつもの」と即答できる人もいれば、同じメニューを毎日にらむ人もいる。明日の注文、つまり、次の選挙の得票率はどのように予測すればよいのだろうか。 報道機関が世論調査で調べている政党支持率は、無作為に選んだ有権者に「支持している政党はどれですか」と尋ねた結果をそのまま集計したものだ。当人の望むと望まざるに関わらず、すべての有権者を同じ確率で選ぶといういささか乱暴な手法を使っているのは、その方法でしか偏り(バイアス)のないデータが得られないからだ。その新聞の購読者やテレビ局の視聴者でない人をも巻き込む性質から、調査結果は公開されている。 政党支持率は、選挙の予測得票率ではない。自民党の支持率は選挙で一度もとったことがない高い水準を維持している
Googleが最新の天気予報ソフトを開発、めっちゃ当たるってよ2023年11月16日 08:00164,482 Thomas Germain -Gizmodo US- [原文] ( R.Mitsubori ) 明日天気になあれ。 ついに、「今日どんな服装で出かけたらいいか」ロボットが教えてくれる時代が来ましたよ。GoogleのAI部門であるGoogle DeepMindは、従来のシステムを90%以上上回る最新の天気予報モデルを発表しました。その名も「GraphCast」という機械学習モデルで、天気予報アプリよりも早く正確に、しかも効率的にこの先10日間のお天気を教えてくれます。 現地時間の14日、Googleの研究チームは論文を発表。そのなかで「我々はこれが、天気予報の転換点になると確信しています」と記しています。 大量の過去気象データから未来を予測現在の天気予報は一般的に「数値天気予報(N
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? はじめに 筆者はかつてデータサイエンティストだった者です。 統計や機械学習をバリバリ使いこなしてデータを分析し、将来の売り上げ予測や要因分析、施策の効果検証などをすることに憧れてこの世界に入りましたが、そうした時間は全体の1割ほどに過ぎず、残り9割の時間の戦いに疲れて戦場を後にしました。 なぜデータサイエンティストは戦わなければならないのだろう。 おそらく一因としてあるのが、データサイエンティストという言葉がバズワード化しすぎてしまったせいで、その定義の輪郭が失われてしまったことだと思います。 整理された定義は、言わずと知れた尾崎隆さん
はじめに データ分析:実用系 Kaggleで勝つデータ分析の技術 ウェブ最適化ではじめる機械学習 データ分析:因果推論 入門 統計的因果推論 計量経済学 大人の教養 世界標準の経営理論 科学的に正しい筋トレ 最強の教科書 落合務のパーフェクトレシピ はじめに 今回は、特にドメインを指定せず、読むと間違いなく誰にでも勉強になるであろうと感じた書籍を紹介します。 データ分析:実用系 Kaggleで勝つデータ分析の技術 Kaggleで勝つデータ分析の技術 作者:門脇 大輔,阪田 隆司,保坂 桂佑,平松 雄司発売日: 2019年10月09日メディア: 単行本(ソフトカバー) "Kaggleで勝つ"と題名にはありますが、データ分析、特に予測モデルを作るようなケースで重要な基礎知識が実践的に学ぶことができる非常に良い本となっています。例えば、交差検証といえば、基本的には汎化誤差の推定量として統計学の本に
左から、ワークマン 店舗エンジニアリング部 需要予測発注グループ マネージャー 森池翔さん、データ戦略部 部長代理 長谷川誠さん、専務取締役 土屋哲雄さん、情報システム部 部長代理 磯海正明さん Photo by Mayumi Sakai 業績好調なワークマンは、Excelを使ったデータ経営を徹底していることで知られる。しかし社内にExcelを使ったデータ分析が完全に浸透した結果、すでに「Excelでは足りない」と次のステップに踏み出している。限界までExcelを使い倒した次に、ワークマンが選んだツールとは?(ノンフィクションライター 酒井真弓) ワークマン、業績好調の秘密は 「Excelの徹底活用」 ワークマンは、2022年3月期、過去最高の売上高1566億円を達成。2012年3月期と比べ、2.6倍の成長を遂げた。 ワークマンの強さの秘密は、Excelを使ったデータ分析にある。データ分析
良い本良い魚良いお酒でした 秋も深まり, 緊急事態宣言が解除された今日このごろ, お酒を片手に読書がだいぶ捗るようになりました📖 酒と魚の話はさておき*1, 長いこと友人かつRetty時代の元同僚である岩永さん(とその仲間たち)*2が, 「Pythonではじめる数理最適化」なる書籍を出しました*3. Pythonではじめる数理最適化 ―ケーススタディでモデリングのスキルを身につけよう― 作者:岩永二郎,石原響太,西村直樹,田中一樹オーム社Amazon エンジニアな自分が読んだ感想として, 数理最適化でモデリングをする人だけでなく, エンジニアからデータサイエンティストへのキャリアチェンジを考えている人も必読なのでは? と思ったので, メモ代わりに感想(とちょっとしたコンテンツ)を残したいと思います. TL;DR 現実の課題・問題(主に仕事)をデータサイエンティストとして解きたい方の参考書
データサイエンティストをしている服部です。 OpenAIからgpt-ossというオープンモデルが登場しました。 早速ですが、このモデルを使いながら中身を理解していきたいと思います。 gpt-ossのモデル特徴 vLLM上で動かす 通常のtokenizerで動かす 最終出力と思考部分 chat templateも見てみる Tool Useを試す Built-in toolも試す Python blowser 複数のツールを同時並列で使えるか? まとめ We Are Hiring! gpt-ossのモデル特徴 openai.com 他にも紹介している記事はたくさんあるため手短に... 今回OpenAIからは2種類のモデル gpt-oss-120b と gpt-oss-20b がリリースされており、どちらもApache2.0ライセンスで提供されてます。 どちらのモデルもMoE(Mixture o
About the Open Edition The 3rd edition of Python for Data Analysis is now available as an "Open Access" HTML version on this site https://wesmckinney.com/book in addition to the usual print and e-book formats. This edition was initially published in August 2022 and will have errata fixed periodically over the coming months and years. If you encounter any errata, please report them here. In general
コンテンツブロックが有効であることを検知しました。 このサイトを利用するには、コンテンツブロック機能(広告ブロック機能を持つ拡張機能等)を無効にしてページを再読み込みしてください。 ✕
この記事はRetty Advent Calendar 2020の21日目の記事です。 adventar.org 昨日は、森田さんのETL基盤でデータを汎用的に処理できるようにした話でした。 はじめに こんにちは。平野(@MasaDoN22)です。 Rettyデータ分析チームのマネージャーを担当しています。 去年、一昨年に引き続き、分析チームの1年の振り返りとして書きました。 今年を一言でいうと、持てる武器を最大限活用して、目の前の課題に向き合った一年でした。 内容としては、分析チームの役割である意思決定支援・分析民主化・データ基盤・MLに沿って書いた一年の総集編です。 その結果、今年も文量が多くなってしまったので、興味のある分野だけ抜粋してお読みいただけますと幸いです。 本記事の前提となる、Rettyデータ分析チームの役割や過去の取り組みは、以下記事を御覧ください。 engineer.re
今回の記事はいつものようにネタが見つからなくて困ったので窮余の一策としての与太話です。話題はこのブログで時々やっている「データサイエンティスト&関連職に関するGoogle Trendsを用いた意識調査」です。 ちなみに、某協会が学生向けのアンケートで意識調査を行った結果が最近報じられていて、SEやコンサルタントなど他職種と比べた場合にどれくらいの立ち位置にあるかの参考になるかもしれません。 対象となる職種 完全に独断と偏見に基づきますが、今年のスキル要件記事で定義した「データサイエンティスト」「機械学習エンジニア」「データアーキテクト」の3つと、さらに後二者の言い換えもしくは類似概念とされそうな「データエンジニア」「AIエンジニア」の2つを加えた、計5つを今回の調査対象としました。 特に「データエンジニア」についてはやはり「データアーキテクト」という語がいわば玄人の間で使われているのに対し
You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く