コンテンツにスキップ
Wikipedia

逆三角関数の原始関数の一覧

出典: フリー百科事典『ウィキペディア(Wikipedia)』
この記事は検証可能参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)
出典検索?"逆三角関数の原始関数の一覧" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL
(2016年1月)

本項は逆三角関数を含む式の原始関数の一覧である。さらに完全な原始関数の一覧は、原始関数の一覧を参照のこと。

以下の全ての記述において、a は 0 でない実数とする。また、C は積分定数とする。

逆正弦関数の積分

[編集 ]
arcsin x d x = x arcsin x + 1 x 2 + C {\displaystyle \int \arcsin x,円dx=x\arcsin x+{\sqrt {1-x^{2}}}+C} {\displaystyle \int \arcsin x,円dx=x\arcsin x+{\sqrt {1-x^{2}}}+C}
arcsin a x d x = x arcsin a x + 1 a 2 x 2 a + C {\displaystyle \int \arcsin ax,円dx=x\arcsin ax+{\frac {\sqrt {1-a^{2}x^{2}}}{a}}+C} {\displaystyle \int \arcsin ax,円dx=x\arcsin ax+{\frac {\sqrt {1-a^{2}x^{2}}}{a}}+C}
x arcsin a x d x = x 2 arcsin a x 2 arcsin a x 4 a 2 + x 1 a 2 x 2 4 a + C {\displaystyle \int x\arcsin ax,円dx={\frac {x^{2}\arcsin ax}{2}}-{\frac {\arcsin ax}{4a^{2}}}+{\frac {x{\sqrt {1-a^{2}x^{2}}}}{4,円a}}+C} {\displaystyle \int x\arcsin ax,円dx={\frac {x^{2}\arcsin ax}{2}}-{\frac {\arcsin ax}{4a^{2}}}+{\frac {x{\sqrt {1-a^{2}x^{2}}}}{4,円a}}+C}
x 2 arcsin a x d x = x 3 arcsin a x 3 + ( a 2 x 2 + 2 ) 1 a 2 x 2 9 a 3 + C {\displaystyle \int x^{2}\arcsin ax,円dx={\frac {x^{3}\arcsin ax}{3}}+{\frac {\left(a^{2}x^{2}+2\right){\sqrt {1-a^{2}x^{2}}}}{9,円a^{3}}}+C} {\displaystyle \int x^{2}\arcsin ax,円dx={\frac {x^{3}\arcsin ax}{3}}+{\frac {\left(a^{2}x^{2}+2\right){\sqrt {1-a^{2}x^{2}}}}{9,円a^{3}}}+C}
x m arcsin a x d x = x m + 1 arcsin a x m + 1 a m + 1 x m + 1 1 a 2 x 2 d x ( m 1 ) {\displaystyle \int x^{m}\arcsin ax,円dx={\frac {x^{m+1}\arcsin ax}{m+1}},円-,円{\frac {a}{m+1}}\int {\frac {x^{m+1}}{\sqrt {1-a^{2}x^{2}}}},円dx\quad (m\neq -1)} {\displaystyle \int x^{m}\arcsin ax,円dx={\frac {x^{m+1}\arcsin ax}{m+1}},円-,円{\frac {a}{m+1}}\int {\frac {x^{m+1}}{\sqrt {1-a^{2}x^{2}}}},円dx\quad (m\neq -1)}
( arcsin a x ) 2 d x = 2 x + x ( arcsin a x ) 2 + 2 1 a 2 x 2 arcsin a x a + C {\displaystyle \int (\arcsin ax)^{2},円dx=-2,円x+x,円(\arcsin ax)^{2}+{\frac {2{\sqrt {1-a^{2}x^{2}}}\arcsin ax}{a}}+C} {\displaystyle \int (\arcsin ax)^{2},円dx=-2,円x+x,円(\arcsin ax)^{2}+{\frac {2{\sqrt {1-a^{2}x^{2}}}\arcsin ax}{a}}+C}
( arcsin a x ) n d x = x ( arcsin a x ) n + n 1 a 2 x 2 ( arcsin a x ) n 1 a n ( n 1 ) ( arcsin a x ) n 2 d x {\displaystyle \int (\arcsin ax)^{n},円dx=x,円(\arcsin ax)^{n},円+,円{\frac {n{\sqrt {1-a^{2}x^{2}}},円(\arcsin ax)^{n-1}}{a}},円-,円n,円(n-1)\int (\arcsin ax)^{n-2},円dx} {\displaystyle \int (\arcsin ax)^{n},円dx=x,円(\arcsin ax)^{n},円+,円{\frac {n{\sqrt {1-a^{2}x^{2}}},円(\arcsin ax)^{n-1}}{a}},円-,円n,円(n-1)\int (\arcsin ax)^{n-2},円dx}
( arcsin a x ) n d x = x ( arcsin a x ) n + 2 ( n + 1 ) ( n + 2 ) + 1 a 2 x 2 ( arcsin a x ) n + 1 a ( n + 1 ) 1 ( n + 1 ) ( n + 2 ) ( arcsin a x ) n + 2 d x ( n 1 , 2 ) {\displaystyle \int (\arcsin ax)^{n},円dx={\frac {x,円(\arcsin ax)^{n+2}}{(n+1),円(n+2)}},円+,円{\frac {{\sqrt {1-a^{2}x^{2}}},円(\arcsin ax)^{n+1}}{a,円(n+1)}},円-,円{\frac {1}{(n+1),円(n+2)}}\int (\arcsin ax)^{n+2},円dx\quad (n\neq -1,-2)} {\displaystyle \int (\arcsin ax)^{n},円dx={\frac {x,円(\arcsin ax)^{n+2}}{(n+1),円(n+2)}},円+,円{\frac {{\sqrt {1-a^{2}x^{2}}},円(\arcsin ax)^{n+1}}{a,円(n+1)}},円-,円{\frac {1}{(n+1),円(n+2)}}\int (\arcsin ax)^{n+2},円dx\quad (n\neq -1,-2)}

逆余弦関数の積分

[編集 ]
arccos x d x = x arccos x 1 x 2 + C {\displaystyle \int \arccos x,円dx=x\arccos x-{\sqrt {1-x^{2}}}+C} {\displaystyle \int \arccos x,円dx=x\arccos x-{\sqrt {1-x^{2}}}+C}
arccos a x d x = x arccos a x 1 a 2 x 2 a + C {\displaystyle \int \arccos ax,円dx=x\arccos ax-{\frac {\sqrt {1-a^{2}x^{2}}}{a}}+C} {\displaystyle \int \arccos ax,円dx=x\arccos ax-{\frac {\sqrt {1-a^{2}x^{2}}}{a}}+C}
x arccos a x d x = x 2 arccos a x 2 arccos a x 4 a 2 x 1 a 2 x 2 4 a + C {\displaystyle \int x\arccos ax,円dx={\frac {x^{2}\arccos ax}{2}}-{\frac {\arccos ax}{4,円a^{2}}}-{\frac {x{\sqrt {1-a^{2}x^{2}}}}{4,円a}}+C} {\displaystyle \int x\arccos ax,円dx={\frac {x^{2}\arccos ax}{2}}-{\frac {\arccos ax}{4,円a^{2}}}-{\frac {x{\sqrt {1-a^{2}x^{2}}}}{4,円a}}+C}
x 2 arccos a x d x = x 3 arccos a x 3 ( a 2 x 2 + 2 ) 1 a 2 x 2 9 a 3 + C {\displaystyle \int x^{2}\arccos ax,円dx={\frac {x^{3}\arccos ax}{3}}-{\frac {\left(a^{2}x^{2}+2\right){\sqrt {1-a^{2}x^{2}}}}{9,円a^{3}}}+C} {\displaystyle \int x^{2}\arccos ax,円dx={\frac {x^{3}\arccos ax}{3}}-{\frac {\left(a^{2}x^{2}+2\right){\sqrt {1-a^{2}x^{2}}}}{9,円a^{3}}}+C}
x m arccos a x d x = x m + 1 arccos a x m + 1 + a m + 1 x m + 1 1 a 2 x 2 d x ( m 1 ) {\displaystyle \int x^{m}\arccos ax,円dx={\frac {x^{m+1}\arccos ax}{m+1}},円+,円{\frac {a}{m+1}}\int {\frac {x^{m+1}}{\sqrt {1-a^{2}x^{2}}}},円dx\quad (m\neq -1)} {\displaystyle \int x^{m}\arccos ax,円dx={\frac {x^{m+1}\arccos ax}{m+1}},円+,円{\frac {a}{m+1}}\int {\frac {x^{m+1}}{\sqrt {1-a^{2}x^{2}}}},円dx\quad (m\neq -1)}
( arccos a x ) 2 d x = 2 x + x ( arccos a x ) 2 2 1 a 2 x 2 arccos a x a + C {\displaystyle \int (\arccos ax)^{2},円dx=-2,円x+x,円(\arccos ax)^{2}-{\frac {2{\sqrt {1-a^{2}x^{2}}}\arccos ax}{a}}+C} {\displaystyle \int (\arccos ax)^{2},円dx=-2,円x+x,円(\arccos ax)^{2}-{\frac {2{\sqrt {1-a^{2}x^{2}}}\arccos ax}{a}}+C}
( arccos a x ) n d x = x ( arccos a x ) n n 1 a 2 x 2 ( arccos a x ) n 1 a n ( n 1 ) ( arccos a x ) n 2 d x {\displaystyle \int (\arccos ax)^{n},円dx=x,円(\arccos ax)^{n},円-,円{\frac {n{\sqrt {1-a^{2}x^{2}}},円(\arccos ax)^{n-1}}{a}},円-,円n,円(n-1)\int (\arccos ax)^{n-2},円dx} {\displaystyle \int (\arccos ax)^{n},円dx=x,円(\arccos ax)^{n},円-,円{\frac {n{\sqrt {1-a^{2}x^{2}}},円(\arccos ax)^{n-1}}{a}},円-,円n,円(n-1)\int (\arccos ax)^{n-2},円dx}
( arccos a x ) n d x = x ( arccos a x ) n + 2 ( n + 1 ) ( n + 2 ) 1 a 2 x 2 ( arccos a x ) n + 1 a ( n + 1 ) 1 ( n + 1 ) ( n + 2 ) ( arccos a x ) n + 2 d x ( n 1 , 2 ) {\displaystyle \int (\arccos ax)^{n},円dx={\frac {x,円(\arccos ax)^{n+2}}{(n+1),円(n+2)}},円-,円{\frac {{\sqrt {1-a^{2}x^{2}}},円(\arccos ax)^{n+1}}{a,円(n+1)}},円-,円{\frac {1}{(n+1),円(n+2)}}\int (\arccos ax)^{n+2},円dx\quad (n\neq -1,-2)} {\displaystyle \int (\arccos ax)^{n},円dx={\frac {x,円(\arccos ax)^{n+2}}{(n+1),円(n+2)}},円-,円{\frac {{\sqrt {1-a^{2}x^{2}}},円(\arccos ax)^{n+1}}{a,円(n+1)}},円-,円{\frac {1}{(n+1),円(n+2)}}\int (\arccos ax)^{n+2},円dx\quad (n\neq -1,-2)}

逆正接関数の積分

[編集 ]
arctan x d x = x arctan x ln ( x 2 + 1 ) 2 + C {\displaystyle \int \arctan x,円dx=x\arctan x-{\frac {\ln(x^{2}+1)}{2}}+C} {\displaystyle \int \arctan x,円dx=x\arctan x-{\frac {\ln(x^{2}+1)}{2}}+C}
arctan a x d x = x arctan a x ln ( a 2 x 2 + 1 ) 2 a + C {\displaystyle \int \arctan ax,円dx=x\arctan ax-{\frac {\ln(a^{2}x^{2}+1)}{2,円a}}+C} {\displaystyle \int \arctan ax,円dx=x\arctan ax-{\frac {\ln(a^{2}x^{2}+1)}{2,円a}}+C}
x arctan a x d x = x 2 arctan a x 2 + arctan a x 2 a 2 x 2 a + C {\displaystyle \int x\arctan ax,円dx={\frac {x^{2}\arctan ax}{2}}+{\frac {\arctan ax}{2,円a^{2}}}-{\frac {x}{2,円a}}+C} {\displaystyle \int x\arctan ax,円dx={\frac {x^{2}\arctan ax}{2}}+{\frac {\arctan ax}{2,円a^{2}}}-{\frac {x}{2,円a}}+C}
x 2 arctan a x d x = x 3 arctan a x 3 + ln ( a 2 x 2 + 1 ) 6 a 3 x 2 6 a + C {\displaystyle \int x^{2}\arctan ax,円dx={\frac {x^{3}\arctan ax}{3}}+{\frac {\ln(a^{2}x^{2}+1)}{6,円a^{3}}}-{\frac {x^{2}}{6,円a}}+C} {\displaystyle \int x^{2}\arctan ax,円dx={\frac {x^{3}\arctan ax}{3}}+{\frac {\ln(a^{2}x^{2}+1)}{6,円a^{3}}}-{\frac {x^{2}}{6,円a}}+C}
x m arctan a x d x = x m + 1 arctan a x m + 1 a m + 1 x m + 1 a 2 x 2 + 1 d x ( m 1 ) {\displaystyle \int x^{m}\arctan ax,円dx={\frac {x^{m+1}\arctan ax}{m+1}}-{\frac {a}{m+1}}\int {\frac {x^{m+1}}{a^{2}x^{2}+1}},円dx\quad (m\neq -1)} {\displaystyle \int x^{m}\arctan ax,円dx={\frac {x^{m+1}\arctan ax}{m+1}}-{\frac {a}{m+1}}\int {\frac {x^{m+1}}{a^{2}x^{2}+1}},円dx\quad (m\neq -1)}

逆余接関数の積分

[編集 ]
arccot x d x = x arccot x + ln ( x 2 + 1 ) 2 + C {\displaystyle \int \operatorname {arccot} x,円dx=x\operatorname {arccot} x+{\frac {\ln \left(x^{2}+1\right)}{2}}+C} {\displaystyle \int \operatorname {arccot} x,円dx=x\operatorname {arccot} x+{\frac {\ln \left(x^{2}+1\right)}{2}}+C}
arccot a x d x = x arccot a x + ln ( a 2 x 2 + 1 ) 2 a + C {\displaystyle \int \operatorname {arccot} ax,円dx=x\operatorname {arccot} ax+{\frac {\ln \left(a^{2}x^{2}+1\right)}{2,円a}}+C} {\displaystyle \int \operatorname {arccot} ax,円dx=x\operatorname {arccot} ax+{\frac {\ln \left(a^{2}x^{2}+1\right)}{2,円a}}+C}
x arccot a x d x = x 2 arccot a x 2 + arccot a x 2 a 2 + x 2 a + C {\displaystyle \int x\operatorname {arccot} ax,円dx={\frac {x^{2}\operatorname {arccot} ax}{2}}+{\frac {\operatorname {arccot} ax}{2,円a^{2}}}+{\frac {x}{2,円a}}+C} {\displaystyle \int x\operatorname {arccot} ax,円dx={\frac {x^{2}\operatorname {arccot} ax}{2}}+{\frac {\operatorname {arccot} ax}{2,円a^{2}}}+{\frac {x}{2,円a}}+C}
x 2 arccot a x d x = x 3 arccot a x 3 ln ( a 2 x 2 + 1 ) 6 a 3 + x 2 6 a + C {\displaystyle \int x^{2}\operatorname {arccot} ax,円dx={\frac {x^{3}\operatorname {arccot} ax}{3}}-{\frac {\ln \left(a^{2}x^{2}+1\right)}{6,円a^{3}}}+{\frac {x^{2}}{6,円a}}+C} {\displaystyle \int x^{2}\operatorname {arccot} ax,円dx={\frac {x^{3}\operatorname {arccot} ax}{3}}-{\frac {\ln \left(a^{2}x^{2}+1\right)}{6,円a^{3}}}+{\frac {x^{2}}{6,円a}}+C}
x m arccot a x d x = x m + 1 arccot a x m + 1 + a m + 1 x m + 1 a 2 x 2 + 1 d x ( m 1 ) {\displaystyle \int x^{m}\operatorname {arccot} ax,円dx={\frac {x^{m+1}\operatorname {arccot} ax}{m+1}}+{\frac {a}{m+1}}\int {\frac {x^{m+1}}{a^{2}x^{2}+1}},円dx\quad (m\neq -1)} {\displaystyle \int x^{m}\operatorname {arccot} ax,円dx={\frac {x^{m+1}\operatorname {arccot} ax}{m+1}}+{\frac {a}{m+1}}\int {\frac {x^{m+1}}{a^{2}x^{2}+1}},円dx\quad (m\neq -1)}

逆正割関数の積分

[編集 ]
arcsec x d x = x arcsec x arctanh 1 1 x 2 + C {\displaystyle \int \operatorname {arcsec} x,円dx=x\operatorname {arcsec} x-\operatorname {arctanh} ,円{\sqrt {1-{\frac {1}{x^{2}}}}}+C} {\displaystyle \int \operatorname {arcsec} x,円dx=x\operatorname {arcsec} x-\operatorname {arctanh} ,円{\sqrt {1-{\frac {1}{x^{2}}}}}+C}
arcsec a x d x = x arcsec a x 1 a arctanh 1 1 a 2 x 2 + C {\displaystyle \int \operatorname {arcsec} ax,円dx=x\operatorname {arcsec} ax-{\frac {1}{a}},円\operatorname {arctanh} ,円{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}+C} {\displaystyle \int \operatorname {arcsec} ax,円dx=x\operatorname {arcsec} ax-{\frac {1}{a}},円\operatorname {arctanh} ,円{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}+C}
x arcsec a x d x = x 2 arcsec a x 2 x 2 a 1 1 a 2 x 2 + C {\displaystyle \int x\operatorname {arcsec} ax,円dx={\frac {x^{2}\operatorname {arcsec} ax}{2}}-{\frac {x}{2,円a}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}+C} {\displaystyle \int x\operatorname {arcsec} ax,円dx={\frac {x^{2}\operatorname {arcsec} ax}{2}}-{\frac {x}{2,円a}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}+C}
x 2 arcsec a x d x = x 3 arcsec a x 3 1 6 a 3 arctanh 1 1 a 2 x 2 x 2 6 a 1 1 a 2 x 2 + C {\displaystyle \int x^{2}\operatorname {arcsec} ax,円dx={\frac {x^{3}\operatorname {arcsec} ax}{3}},円-,円{\frac {1}{6,円a^{3}}},円\operatorname {arctanh} ,円{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}},円-,円{\frac {x^{2}}{6,円a}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}},円+,円C} {\displaystyle \int x^{2}\operatorname {arcsec} ax,円dx={\frac {x^{3}\operatorname {arcsec} ax}{3}},円-,円{\frac {1}{6,円a^{3}}},円\operatorname {arctanh} ,円{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}},円-,円{\frac {x^{2}}{6,円a}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}},円+,円C}
x m arcsec a x d x = x m + 1 arcsec a x m + 1 1 a ( m + 1 ) x m 1 1 1 a 2 x 2 d x ( m 1 ) {\displaystyle \int x^{m}\operatorname {arcsec} ax,円dx={\frac {x^{m+1}\operatorname {arcsec} ax}{m+1}},円-,円{\frac {1}{a,円(m+1)}}\int {\frac {x^{m-1}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}},円dx\quad (m\neq -1)} {\displaystyle \int x^{m}\operatorname {arcsec} ax,円dx={\frac {x^{m+1}\operatorname {arcsec} ax}{m+1}},円-,円{\frac {1}{a,円(m+1)}}\int {\frac {x^{m-1}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}},円dx\quad (m\neq -1)}

逆余割関数の積分

[編集 ]
arccsc x d x = x arccsc x + ln | x + x 2 1 | + C = x arccsc x + arccosh ( x ) + C {\displaystyle \int \operatorname {arccsc} x,円dx=x\operatorname {arccsc} x,円+,円\ln \left|x+{\sqrt {x^{2}-1}}\right|,円+,円C=x\operatorname {arccsc} x,円+,円\operatorname {arccosh} (x),円+,円C} {\displaystyle \int \operatorname {arccsc} x,円dx=x\operatorname {arccsc} x,円+,円\ln \left|x+{\sqrt {x^{2}-1}}\right|,円+,円C=x\operatorname {arccsc} x,円+,円\operatorname {arccosh} (x),円+,円C}
arccsc a x d x = x arccsc a x + 1 a arctanh 1 1 a 2 x 2 + C {\displaystyle \int \operatorname {arccsc} ax,円dx=x\operatorname {arccsc} ax+{\frac {1}{a}},円\operatorname {arctanh} ,円{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}+C} {\displaystyle \int \operatorname {arccsc} ax,円dx=x\operatorname {arccsc} ax+{\frac {1}{a}},円\operatorname {arctanh} ,円{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}+C}
x arccsc a x d x = x 2 arccsc a x 2 + x 2 a 1 1 a 2 x 2 + C {\displaystyle \int x\operatorname {arccsc} ax,円dx={\frac {x^{2}\operatorname {arccsc} ax}{2}}+{\frac {x}{2,円a}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}+C} {\displaystyle \int x\operatorname {arccsc} ax,円dx={\frac {x^{2}\operatorname {arccsc} ax}{2}}+{\frac {x}{2,円a}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}+C}
x 2 arccsc a x d x = x 3 arccsc a x 3 + 1 6 a 3 arctanh 1 1 a 2 x 2 + x 2 6 a 1 1 a 2 x 2 + C {\displaystyle \int x^{2}\operatorname {arccsc} ax,円dx={\frac {x^{3}\operatorname {arccsc} ax}{3}},円+,円{\frac {1}{6,円a^{3}}},円\operatorname {arctanh} ,円{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}},円+,円{\frac {x^{2}}{6,円a}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}},円+,円C} {\displaystyle \int x^{2}\operatorname {arccsc} ax,円dx={\frac {x^{3}\operatorname {arccsc} ax}{3}},円+,円{\frac {1}{6,円a^{3}}},円\operatorname {arctanh} ,円{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}},円+,円{\frac {x^{2}}{6,円a}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}},円+,円C}
x m arccsc a x d x = x m + 1 arccsc a x m + 1 + 1 a ( m + 1 ) x m 1 1 1 a 2 x 2 d x ( m 1 ) {\displaystyle \int x^{m}\operatorname {arccsc} ax,円dx={\frac {x^{m+1}\operatorname {arccsc} ax}{m+1}},円+,円{\frac {1}{a,円(m+1)}}\int {\frac {x^{m-1}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}},円dx\quad (m\neq -1)} {\displaystyle \int x^{m}\operatorname {arccsc} ax,円dx={\frac {x^{m+1}\operatorname {arccsc} ax}{m+1}},円+,円{\frac {1}{a,円(m+1)}}\int {\frac {x^{m-1}}{\sqrt {1-{\frac {1}{a^{2}x^{2}}}}}},円dx\quad (m\neq -1)}
Precalculus
極限
微分法
積分法
ベクトル解析
多変数微分積分学
級数
特殊関数と数学定数
歴史 (英語版)
一覧
カテゴリ カテゴリ

AltStyle によって変換されたページ (->オリジナル) /