Jump to content
Wikipedia The Free Encyclopedia

Wrapped exponential distribution

From Wikipedia, the free encyclopedia
Probability distribution
Wrapped Exponential
Probability density function
Plot of the wrapped exponential PDF
The support is chosen to be [0,2π]
Cumulative distribution function
Plot of the wrapped exponential CDF
The support is chosen to be [0,2π]
Parameters λ > 0 {\displaystyle \lambda >0} {\displaystyle \lambda >0}
Support 0 θ < 2 π {\displaystyle 0\leq \theta <2\pi } {\displaystyle 0\leq \theta <2\pi }
PDF λ e λ θ 1 e 2 π λ {\displaystyle {\frac {\lambda e^{-\lambda \theta }}{1-e^{-2\pi \lambda }}}} {\displaystyle {\frac {\lambda e^{-\lambda \theta }}{1-e^{-2\pi \lambda }}}}
CDF 1 e λ θ 1 e 2 π λ {\displaystyle {\frac {1-e^{-\lambda \theta }}{1-e^{-2\pi \lambda }}}} {\displaystyle {\frac {1-e^{-\lambda \theta }}{1-e^{-2\pi \lambda }}}}
Mean arctan ( 1 / λ ) {\displaystyle \arctan(1/\lambda )} {\displaystyle \arctan(1/\lambda )} (circular)
Variance 1 λ 1 + λ 2 {\displaystyle 1-{\frac {\lambda }{\sqrt {1+\lambda ^{2}}}}} {\displaystyle 1-{\frac {\lambda }{\sqrt {1+\lambda ^{2}}}}} (circular)
Entropy 1 + ln ( β 1 λ ) β β 1 ln ( β ) {\displaystyle 1+\ln \left({\frac {\beta -1}{\lambda }}\right)-{\frac {\beta }{\beta -1}}\ln(\beta )} {\displaystyle 1+\ln \left({\frac {\beta -1}{\lambda }}\right)-{\frac {\beta }{\beta -1}}\ln(\beta )} where β = e 2 π λ {\displaystyle \beta =e^{2\pi \lambda }} {\displaystyle \beta =e^{2\pi \lambda }} (differential)
CF 1 1 i n / λ {\displaystyle {\frac {1}{1-in/\lambda }}} {\displaystyle {\frac {1}{1-in/\lambda }}}

In probability theory and directional statistics, a wrapped exponential distribution is a wrapped probability distribution that results from the "wrapping" of the exponential distribution around the unit circle.

Definition

[edit ]

The probability density function of the wrapped exponential distribution is[1]

f WE ( θ ; λ ) = k = 0 λ e λ ( θ + 2 π k ) = λ e λ θ 1 e 2 π λ , {\displaystyle f_{\text{WE}}(\theta ;\lambda )=\sum _{k=0}^{\infty }\lambda e^{-\lambda (\theta +2\pi k)}={\frac {\lambda e^{-\lambda \theta }}{1-e^{-2\pi \lambda }}},} {\displaystyle f_{\text{WE}}(\theta ;\lambda )=\sum _{k=0}^{\infty }\lambda e^{-\lambda (\theta +2\pi k)}={\frac {\lambda e^{-\lambda \theta }}{1-e^{-2\pi \lambda }}},}

for 0 θ < 2 π {\displaystyle 0\leq \theta <2\pi } {\displaystyle 0\leq \theta <2\pi } where λ > 0 {\displaystyle \lambda >0} {\displaystyle \lambda >0} is the rate parameter of the unwrapped distribution. This is identical to the truncated distribution obtained by restricting observed values X from the exponential distribution with rate parameter λ to the range 0 X < 2 π {\displaystyle 0\leq X<2\pi } {\displaystyle 0\leq X<2\pi }. Note that this distribution is not periodic.

Characteristic function

[edit ]

The characteristic function of the wrapped exponential is just the characteristic function of the exponential function evaluated at integer arguments:

φ n ( λ ) = 1 1 i n / λ {\displaystyle \varphi _{n}(\lambda )={\frac {1}{1-in/\lambda }}} {\displaystyle \varphi _{n}(\lambda )={\frac {1}{1-in/\lambda }}}

which yields an alternate expression for the wrapped exponential PDF in terms of the circular variable z = ei(θ-m) valid for all real θ and m:

f WE ( z ; λ ) = 1 2 π n = z n 1 i n / λ = { λ π Im ( Φ ( z , 1 , i λ ) ) 1 2 π if  z 1 λ 1 e 2 π λ if  z = 1 {\displaystyle {\begin{aligned}f_{\text{WE}}(z;\lambda )&={\frac {1}{2\pi }}\sum _{n=-\infty }^{\infty }{\frac {z^{-n}}{1-in/\lambda }}\\[10pt]&={\begin{cases}{\frac {\lambda }{\pi }},円{\textrm {Im}}(\Phi (z,1,-i\lambda ))-{\frac {1}{2\pi }}&{\text{if }}z\neq 1\\[12pt]{\frac {\lambda }{1-e^{-2\pi \lambda }}}&{\text{if }}z=1\end{cases}}\end{aligned}}} {\displaystyle {\begin{aligned}f_{\text{WE}}(z;\lambda )&={\frac {1}{2\pi }}\sum _{n=-\infty }^{\infty }{\frac {z^{-n}}{1-in/\lambda }}\\[10pt]&={\begin{cases}{\frac {\lambda }{\pi }},円{\textrm {Im}}(\Phi (z,1,-i\lambda ))-{\frac {1}{2\pi }}&{\text{if }}z\neq 1\\[12pt]{\frac {\lambda }{1-e^{-2\pi \lambda }}}&{\text{if }}z=1\end{cases}}\end{aligned}}}

where Φ ( ) {\displaystyle \Phi ()} {\displaystyle \Phi ()} is the Lerch transcendent function.

Circular moments

[edit ]

In terms of the circular variable z = e i θ {\displaystyle z=e^{i\theta }} {\displaystyle z=e^{i\theta }} the circular moments of the wrapped exponential distribution are the characteristic function of the exponential distribution evaluated at integer arguments:

z n = Γ e i n θ f WE ( θ ; λ ) d θ = 1 1 i n / λ , {\displaystyle \langle z^{n}\rangle =\int _{\Gamma }e^{in\theta },円f_{\text{WE}}(\theta ;\lambda ),円d\theta ={\frac {1}{1-in/\lambda }},} {\displaystyle \langle z^{n}\rangle =\int _{\Gamma }e^{in\theta },円f_{\text{WE}}(\theta ;\lambda ),円d\theta ={\frac {1}{1-in/\lambda }},}

where Γ {\displaystyle \Gamma ,円} {\displaystyle \Gamma ,円} is some interval of length 2 π {\displaystyle 2\pi } {\displaystyle 2\pi }. The first moment is then the average value of z, also known as the mean resultant, or mean resultant vector:

z = 1 1 i / λ . {\displaystyle \langle z\rangle ={\frac {1}{1-i/\lambda }}.} {\displaystyle \langle z\rangle ={\frac {1}{1-i/\lambda }}.}

The mean angle is

θ = A r g z = arctan ( 1 / λ ) , {\displaystyle \langle \theta \rangle =\mathrm {Arg} \langle z\rangle =\arctan(1/\lambda ),} {\displaystyle \langle \theta \rangle =\mathrm {Arg} \langle z\rangle =\arctan(1/\lambda ),}

and the length of the mean resultant is

R = | z | = λ 1 + λ 2 . {\displaystyle R=|\langle z\rangle |={\frac {\lambda }{\sqrt {1+\lambda ^{2}}}}.} {\displaystyle R=|\langle z\rangle |={\frac {\lambda }{\sqrt {1+\lambda ^{2}}}}.}

and the variance is then 1 − R.

Characterisation

[edit ]

The wrapped exponential distribution is the maximum entropy probability distribution for distributions restricted to the range 0 θ < 2 π {\displaystyle 0\leq \theta <2\pi } {\displaystyle 0\leq \theta <2\pi } for a fixed value of the expectation E ( θ ) {\displaystyle \operatorname {E} (\theta )} {\displaystyle \operatorname {E} (\theta )}.[1]

See also

[edit ]

References

[edit ]
  1. ^ a b Jammalamadaka, S. Rao; Kozubowski, Tomasz J. (2004). "New Families of Wrapped Distributions for Modeling Skew Circular Data" (PDF). Communications in Statistics - Theory and Methods. 33 (9): 2059–2074. doi:10.1081/STA-200026570 . Retrieved 2011年06月13日.
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families

AltStyle によって変換されたページ (->オリジナル) /