Wrapped exponential distribution
| Wrapped Exponential | |||
|---|---|---|---|
|
Probability density function Plot of the wrapped exponential PDF The support is chosen to be [0,2π] | |||
|
Cumulative distribution function Plot of the wrapped exponential CDF The support is chosen to be [0,2π] | |||
| Parameters | {\displaystyle \lambda >0} | ||
| Support | {\displaystyle 0\leq \theta <2\pi } | ||
| {\displaystyle {\frac {\lambda e^{-\lambda \theta }}{1-e^{-2\pi \lambda }}}} | |||
| CDF | {\displaystyle {\frac {1-e^{-\lambda \theta }}{1-e^{-2\pi \lambda }}}} | ||
| Mean | {\displaystyle \arctan(1/\lambda )} (circular) | ||
| Variance | {\displaystyle 1-{\frac {\lambda }{\sqrt {1+\lambda ^{2}}}}} (circular) | ||
| Entropy | {\displaystyle 1+\ln \left({\frac {\beta -1}{\lambda }}\right)-{\frac {\beta }{\beta -1}}\ln(\beta )} where {\displaystyle \beta =e^{2\pi \lambda }} (differential) | ||
| CF | {\displaystyle {\frac {1}{1-in/\lambda }}} | ||
In probability theory and directional statistics, a wrapped exponential distribution is a wrapped probability distribution that results from the "wrapping" of the exponential distribution around the unit circle.
Definition
[edit ]The probability density function of the wrapped exponential distribution is[1]
- {\displaystyle f_{\text{WE}}(\theta ;\lambda )=\sum _{k=0}^{\infty }\lambda e^{-\lambda (\theta +2\pi k)}={\frac {\lambda e^{-\lambda \theta }}{1-e^{-2\pi \lambda }}},}
for {\displaystyle 0\leq \theta <2\pi } where {\displaystyle \lambda >0} is the rate parameter of the unwrapped distribution. This is identical to the truncated distribution obtained by restricting observed values X from the exponential distribution with rate parameter λ to the range {\displaystyle 0\leq X<2\pi }. Note that this distribution is not periodic.
Characteristic function
[edit ]The characteristic function of the wrapped exponential is just the characteristic function of the exponential function evaluated at integer arguments:
- {\displaystyle \varphi _{n}(\lambda )={\frac {1}{1-in/\lambda }}}
which yields an alternate expression for the wrapped exponential PDF in terms of the circular variable z = ei(θ-m) valid for all real θ and m:
- {\displaystyle {\begin{aligned}f_{\text{WE}}(z;\lambda )&={\frac {1}{2\pi }}\sum _{n=-\infty }^{\infty }{\frac {z^{-n}}{1-in/\lambda }}\\[10pt]&={\begin{cases}{\frac {\lambda }{\pi }},円{\textrm {Im}}(\Phi (z,1,-i\lambda ))-{\frac {1}{2\pi }}&{\text{if }}z\neq 1\\[12pt]{\frac {\lambda }{1-e^{-2\pi \lambda }}}&{\text{if }}z=1\end{cases}}\end{aligned}}}
where {\displaystyle \Phi ()} is the Lerch transcendent function.
Circular moments
[edit ]In terms of the circular variable {\displaystyle z=e^{i\theta }} the circular moments of the wrapped exponential distribution are the characteristic function of the exponential distribution evaluated at integer arguments:
- {\displaystyle \langle z^{n}\rangle =\int _{\Gamma }e^{in\theta },円f_{\text{WE}}(\theta ;\lambda ),円d\theta ={\frac {1}{1-in/\lambda }},}
where {\displaystyle \Gamma ,円} is some interval of length {\displaystyle 2\pi }. The first moment is then the average value of z, also known as the mean resultant, or mean resultant vector:
- {\displaystyle \langle z\rangle ={\frac {1}{1-i/\lambda }}.}
The mean angle is
- {\displaystyle \langle \theta \rangle =\mathrm {Arg} \langle z\rangle =\arctan(1/\lambda ),}
and the length of the mean resultant is
- {\displaystyle R=|\langle z\rangle |={\frac {\lambda }{\sqrt {1+\lambda ^{2}}}}.}
and the variance is then 1 − R.
Characterisation
[edit ]The wrapped exponential distribution is the maximum entropy probability distribution for distributions restricted to the range {\displaystyle 0\leq \theta <2\pi } for a fixed value of the expectation {\displaystyle \operatorname {E} (\theta )}.[1]
See also
[edit ]References
[edit ]- ^ a b Jammalamadaka, S. Rao; Kozubowski, Tomasz J. (2004). "New Families of Wrapped Distributions for Modeling Skew Circular Data" (PDF). Communications in Statistics - Theory and Methods. 33 (9): 2059–2074. doi:10.1081/STA-200026570 . Retrieved 2011年06月13日.