Complex Wishart distribution
<math>...</math> and {{math }} in the same expression. Please help improve the content. (July 2025) (Learn how and when to remove this message)| Complex Wishart | |||
|---|---|---|---|
| Notation | A ~ CWp({\displaystyle \Gamma }, n) | ||
| Parameters |
n > p − 1 degrees of freedom (real) {\displaystyle \Gamma } > 0 (p ×ばつ p Hermitian pos. def) | ||
| Support | A (p ×ばつ p) Hermitian positive definite matrix | ||
|
{\displaystyle {\frac {\det \left(\mathbf {A} \right)^{(n-p)}e^{-\operatorname {tr} (\mathbf {\Gamma } ^{-1}\mathbf {A} )}}{\det \left(\mathbf {\Gamma } \right)^{n}\cdot {\mathcal {C}}{\widetilde {\Gamma }}_{p}(n)}}}
| |||
| Mean | {\displaystyle \operatorname {E} [A]=n\Gamma } | ||
| Mode | {\displaystyle (n-p)\mathbf {\Gamma } } for n ≥ p + 1 | ||
| CF | {\displaystyle \det \left(I_{p}-i\mathbf {\Gamma } \mathbf {\Theta } \right)^{-n}} | ||
In statistics, the complex Wishart distribution is a complex version of the Wishart distribution. It is the distribution of {\displaystyle n} times the sample Hermitian covariance matrix of {\displaystyle n} zero-mean independent Gaussian random variables. It has support for {\displaystyle p\times p} Hermitian positive definite matrices.[1]
The complex Wishart distribution is also encountered in wireless communications, while analyzing the performance of Rayleigh fading MIMO wireless channels.[2]
The complex Wishart distribution is the density of a complex-valued sample covariance matrix. Let
- {\displaystyle S_{p\times p}=\sum _{i=1}^{n}G_{i}G_{i}^{H}}
where each {\displaystyle G_{i}} is an independent column p-vector of random complex Gaussian zero-mean samples and {\displaystyle (.)^{H}} is an Hermitian (complex conjugate) transpose. If the covariance of G is {\displaystyle \mathbb {E} [GG^{H}]=M} then
- {\displaystyle S\sim n{\mathcal {CW}}(M,n,p)}
where {\displaystyle {\mathcal {CW}}(M,n,p)} is the complex central Wishart distribution with n degrees of freedom and mean value, or scale matrix, M.
- {\displaystyle f_{S}(\mathbf {S} )={\frac {\left|\mathbf {S} \right|^{n-p}e^{-\operatorname {tr} (\mathbf {M} ^{-1}\mathbf {S} )}}{\left|\mathbf {M} \right|^{n}\cdot {\mathcal {C}}{\widetilde {\Gamma }}_{p}(n)}},\;\;\;n\geq p,\;\;\;\left|\mathbf {M} \right|>0}
where
- {\displaystyle {\mathcal {C}}{\widetilde {\Gamma }}_{p}^{}(n)=\pi ^{p(p-1)/2}\prod _{j=1}^{p}\Gamma (n-j+1)}
is the complex multivariate Gamma function.[3]
Using the trace rotation rule {\displaystyle \operatorname {tr} (ABC)=\operatorname {tr} (CAB)} we also get
- {\displaystyle f_{S}(\mathbf {S} )={\frac {\left|\mathbf {S} \right|^{n-p}}{\left|\mathbf {M} \right|^{n}\cdot {\mathcal {C}}{\widetilde {\Gamma }}_{p}(n)}}\exp \left(-\sum _{i=1}^{p}G_{i}^{H}\mathbf {M} ^{-1}G_{i}\right)}
which is quite close to the complex multivariate pdf of G itself. The elements of G conventionally have circular symmetry such that {\displaystyle \mathbb {E} [GG^{T}]=0}.
Inverse Complex Wishart The distribution of the inverse complex Wishart distribution of {\displaystyle \mathbf {Y} =\mathbf {S^{-1}} } according to Goodman,[3] Shaman[4] is
- {\displaystyle f_{Y}(\mathbf {Y} )={\frac {\left|\mathbf {Y} \right|^{-(n+p)}e^{-\operatorname {tr} (\mathbf {M} \mathbf {Y^{-1}} )}}{\left|\mathbf {M} \right|^{-n}\cdot {\mathcal {C}}{\widetilde {\Gamma }}_{p}(n)}},\;\;\;n\geq p,\;\;\;\det \left(\mathbf {Y} \right)>0}
where {\displaystyle \mathbf {M} =\mathbf {\Gamma ^{-1}} }.
If derived via a matrix inversion mapping, the result depends on the complex Jacobian determinant
- {\displaystyle {\mathcal {C}}J_{Y}(Y^{-1})=\left|Y\right|^{-2p}}
Goodman and others[5] discuss such complex Jacobians.
Eigenvalues
[edit ]The probability distribution of the eigenvalues of the complex Hermitian Wishart distribution are given by, for example, James[6] and Edelman.[7] For a {\displaystyle p\times p} matrix with {\displaystyle \nu \geq p} degrees of freedom we have
- {\displaystyle f(\lambda _{1}\dots \lambda _{p})={\tilde {K}}_{\nu ,p}\exp \left(-{\frac {1}{2}}\sum _{i=1}^{p}\lambda _{i}\right)\prod _{i=1}^{p}\lambda _{i}^{\nu -p}\prod _{i<j}(\lambda _{i}-\lambda _{j})^{2}d\lambda _{1}\dots d\lambda _{p},\;\;\;\lambda _{i}\in \mathbb {R} \geq 0}
where
- {\displaystyle {\tilde {K}}_{\nu ,p}^{-1}=2^{p\nu }\prod _{i=1}^{p}\Gamma (\nu -i+1)\Gamma (p-i+1)}
Note however that Edelman uses the "mathematical" definition of a complex normal variable {\displaystyle Z=X+iY} where iid X and Y each have unit variance and the variance of {\displaystyle Z=\mathbf {E} \left(X^{2}+Y^{2}\right)=2}. For the definition more common in engineering circles, with X and Y each having 0.5 variance, the eigenvalues are reduced by a factor of 2.
This spectral density can be integrated to give the probability that all eigenvalues of a Wishart random matrix lie within an interval.[8]
The spectral density can be also integrated to give the marginal distribution of eigenvalues.[9] [10]
There are also approximations for marginal eigenvalue distributions. From Edelman we have that if S is a sample from the complex Wishart distribution with {\displaystyle p=\kappa \nu ,\;\;0\leq \kappa \leq 1} such that {\displaystyle S_{p\times p}\sim {\mathcal {CW}}\left(2\mathbf {I} ,{\frac {p}{\kappa }}\right)} then in the limit {\displaystyle p\rightarrow \infty } the distribution of eigenvalues converges in probability to the Marchenko–Pastur distribution function
- {\displaystyle p_{\lambda }(\lambda )={\frac {\sqrt {[\lambda /2-({\sqrt {\kappa }}-1)^{2}][{\sqrt {\kappa }}+1)^{2}-\lambda /2]}}{4\pi \kappa (\lambda /2)}},\;\;\;2({\sqrt {\kappa }}-1)^{2}\leq \lambda \leq 2({\sqrt {\kappa }}+1)^{2},\;\;\;0\leq \kappa \leq 1}
This distribution becomes identical to the real Wishart case, by replacing {\displaystyle \lambda } by {\displaystyle 2\lambda }, on account of the doubled sample variance, so in the case {\displaystyle S_{p\times p}\sim {\mathcal {CW}}\left(\mathbf {I} ,{\frac {p}{\kappa }}\right)}, the pdf reduces to the real Wishart one:
- {\displaystyle p_{\lambda }(\lambda )={\frac {\sqrt {[\lambda -({\sqrt {\kappa }}-1)^{2}][{\sqrt {\kappa }}+1)^{2}-\lambda ]}}{2\pi \kappa \lambda }},\;\;\;({\sqrt {\kappa }}-1)^{2}\leq \lambda \leq ({\sqrt {\kappa }}+1)^{2},\;\;\;0\leq \kappa \leq 1}
A special case is {\displaystyle \kappa =1}
- {\displaystyle p_{\lambda }(\lambda )={\frac {1}{4\pi }}\left({\frac {8-\lambda }{\lambda }}\right)^{\frac {1}{2}},\;0\leq \lambda \leq 8}
or, if a Var(Z) = 1 convention is used then
- {\displaystyle p_{\lambda }(\lambda )={\frac {1}{2\pi }}\left({\frac {4-\lambda }{\lambda }}\right)^{\frac {1}{2}},\;0\leq \lambda \leq 4}.
The Wigner semicircle distribution arises by making the change of variable {\displaystyle y=\pm {\sqrt {\lambda }}} in the latter and selecting the sign of y randomly yielding pdf
- {\displaystyle p_{y}(y)={\frac {1}{2\pi }}\left(4-y^{2}\right)^{\frac {1}{2}},\;-2\leq y\leq 2}
In place of the definition of the Wishart sample matrix above, {\displaystyle S_{p\times p}=\sum _{j=1}^{\nu }G_{j}G_{j}^{H}}, we can define a Gaussian ensemble
- {\displaystyle \mathbf {G} _{i,j}=[G_{1}\dots G_{\nu }]\in \mathbb {C} ^{,円p\times \nu }}
such that S is the matrix product {\displaystyle S=\mathbf {G} \mathbf {G^{H}} }. The real non-negative eigenvalues of S are then the modulus-squared singular values of the ensemble {\displaystyle \mathbf {G} } and the moduli of the latter have a quarter-circle distribution.
In the case {\displaystyle \kappa >1} such that {\displaystyle \nu <p} then {\displaystyle S} is rank deficient with at least {\displaystyle p-\nu } null eigenvalues. However the singular values of {\displaystyle \mathbf {G} } are invariant under transposition so, redefining {\displaystyle {\tilde {S}}=\mathbf {G^{H}} \mathbf {G} }, then {\displaystyle {\tilde {S}}_{\nu \times \nu }} has a complex Wishart distribution, has full rank almost certainly, and eigenvalue distributions can be obtained from {\displaystyle {\tilde {S}}} in lieu, using all the previous equations.
In cases where the columns of {\displaystyle \mathbf {G} } are not linearly independent and {\displaystyle {\tilde {S}}_{\nu \times \nu }} remains singular, a QR decomposition can be used to reduce G to a product like
- {\displaystyle \mathbf {G} =Q{\begin{bmatrix}\mathbf {R} \0円\end{bmatrix}}}
such that {\displaystyle \mathbf {R} _{q\times q},\;\;q\leq \nu } is upper triangular with full rank and {\displaystyle {\tilde {\tilde {S}}}_{q\times q}=\mathbf {R^{H}} \mathbf {R} } has further reduced dimensionality.
The eigenvalues are of practical significance in radio communications theory since they define the Shannon channel capacity of a {\displaystyle \nu \times p} MIMO wireless channel which, to first approximation, is modeled as a zero-mean complex Gaussian ensemble.
References
[edit ]- ^ N. R. Goodman (1963). "The distribution of the determinant of a complex Wishart distributed matrix". The Annals of Mathematical Statistics. 34 (1): 178–180. doi:10.1214/aoms/1177704251 .
- ^ Chiani, M.; Win, M. Z.; Zanella, A. (2003). "On the capacity of spatially correlated MIMO Rayleigh-fading channels". IEEE Transactions on Information Theory. 49 (10): 2363–2371. Bibcode:2003ITIT...49.2363C. doi:10.1109/TIT.2003.817437.
- ^ a b Goodman, N R (1963). "Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction)". Ann. Math. Statist. 34: 152–177. doi:10.1214/aoms/1177704250 .
- ^ Shaman, Paul (1980). "The Inverted Complex Wishart Distribution and Its Application to Spectral Estimation". Journal of Multivariate Analysis. 10: 51–59. doi:10.1016/0047-259X(80)90081-0 .
- ^ Cross, D J (May 2008). "On the Relation between Real and Complex Jacobian Determinants" (PDF). drexel.edu.
- ^ James, A. T. (1964). "Distributions of Matrix Variates and Latent Roots Derived from Normal Samples". Ann. Math. Statist. 35 (2): 475–501. doi:10.1214/aoms/1177703550 .
- ^ Edelman, Alan (October 1988). "Eigenvalues and Condition Numbers of Random Matrices" (PDF). SIAM J. Matrix Anal. Appl. 9 (4): 543–560. doi:10.1137/0609045. hdl:1721.1/14322 .
- ^ Chiani, M. (2017). "On the probability that all eigenvalues of Gaussian, Wishart, and double Wishart random matrices lie within an interval". IEEE Transactions on Information Theory. 63 (7): 4521–4531. arXiv:1502.04189 . Bibcode:2017ITIT...63.4521C. doi:10.1109/TIT.2017.2694846 .
- ^ Zanella, A.; Chiani, M.; Win, M. Z. (2009). "On the Marginal Distribution of the Eigenvalues of Wishart Matrices". IEEE Transactions on Communications. 57 (4): 1050–1060. Bibcode:2009ITCom..57.1050Z. doi:10.1109/TCOMM.2009年04月07日0143.
- ^ Chiani, M.; Zanella, A. (2020). "On the Distribution of an Arbitrary Subset of the Eigenvalues for some Finite Dimensional Random Matrices". Random Matrices: Theory and Applications. 9 (1): 1–25. arXiv:2001.00519 . doi:10.1142/S2010326320400043.