Jump to content
Wikipedia The Free Encyclopedia

Complex Wishart distribution

From Wikipedia, the free encyclopedia
Probability distribution on complex matrices
This article needs editing to comply with Wikipedia's Manual of Style. In particular, it has problems with MOS:FORMULA - avoid mixing <math>...</math> and {{math }} in the same expression. Please help improve the content. (July 2025) (Learn how and when to remove this message)
Complex Wishart
Notation A ~ CWp( Γ {\displaystyle \Gamma } {\displaystyle \Gamma }, n)
Parameters n > p − 1 degrees of freedom (real)
Γ {\displaystyle \Gamma } {\displaystyle \Gamma } > 0 (p ×ばつ p Hermitian pos. def)
Support A (p ×ばつ p) Hermitian positive definite matrix
PDF

det ( A ) ( n p ) e tr ( Γ 1 A ) det ( Γ ) n C Γ ~ p ( n ) {\displaystyle {\frac {\det \left(\mathbf {A} \right)^{(n-p)}e^{-\operatorname {tr} (\mathbf {\Gamma } ^{-1}\mathbf {A} )}}{\det \left(\mathbf {\Gamma } \right)^{n}\cdot {\mathcal {C}}{\widetilde {\Gamma }}_{p}(n)}}} {\displaystyle {\frac {\det \left(\mathbf {A} \right)^{(n-p)}e^{-\operatorname {tr} (\mathbf {\Gamma } ^{-1}\mathbf {A} )}}{\det \left(\mathbf {\Gamma } \right)^{n}\cdot {\mathcal {C}}{\widetilde {\Gamma }}_{p}(n)}}}

  • C Γ ~ p {\displaystyle {\mathcal {C}}{\widetilde {\mathbf {\Gamma } }}_{p}} {\displaystyle {\mathcal {C}}{\widetilde {\mathbf {\Gamma } }}_{p}} is the p {\displaystyle p} {\displaystyle p}-variate complex multivariate gamma function
  • tr is the trace function
Mean E [ A ] = n Γ {\displaystyle \operatorname {E} [A]=n\Gamma } {\displaystyle \operatorname {E} [A]=n\Gamma }
Mode ( n p ) Γ {\displaystyle (n-p)\mathbf {\Gamma } } {\displaystyle (n-p)\mathbf {\Gamma } } for np + 1
CF det ( I p i Γ Θ ) n {\displaystyle \det \left(I_{p}-i\mathbf {\Gamma } \mathbf {\Theta } \right)^{-n}} {\displaystyle \det \left(I_{p}-i\mathbf {\Gamma } \mathbf {\Theta } \right)^{-n}}

In statistics, the complex Wishart distribution is a complex version of the Wishart distribution. It is the distribution of n {\displaystyle n} {\displaystyle n} times the sample Hermitian covariance matrix of n {\displaystyle n} {\displaystyle n} zero-mean independent Gaussian random variables. It has support for p × p {\displaystyle p\times p} {\displaystyle p\times p} Hermitian positive definite matrices.[1]

The complex Wishart distribution is also encountered in wireless communications, while analyzing the performance of Rayleigh fading MIMO wireless channels.[2]

The complex Wishart distribution is the density of a complex-valued sample covariance matrix. Let

S p × p = i = 1 n G i G i H {\displaystyle S_{p\times p}=\sum _{i=1}^{n}G_{i}G_{i}^{H}} {\displaystyle S_{p\times p}=\sum _{i=1}^{n}G_{i}G_{i}^{H}}

where each G i {\displaystyle G_{i}} {\displaystyle G_{i}} is an independent column p-vector of random complex Gaussian zero-mean samples and ( . ) H {\displaystyle (.)^{H}} {\displaystyle (.)^{H}} is an Hermitian (complex conjugate) transpose. If the covariance of G is E [ G G H ] = M {\displaystyle \mathbb {E} [GG^{H}]=M} {\displaystyle \mathbb {E} [GG^{H}]=M} then

S n C W ( M , n , p ) {\displaystyle S\sim n{\mathcal {CW}}(M,n,p)} {\displaystyle S\sim n{\mathcal {CW}}(M,n,p)}

where C W ( M , n , p ) {\displaystyle {\mathcal {CW}}(M,n,p)} {\displaystyle {\mathcal {CW}}(M,n,p)} is the complex central Wishart distribution with n degrees of freedom and mean value, or scale matrix, M.

f S ( S ) = | S | n p e tr ( M 1 S ) | M | n C Γ ~ p ( n ) , n p , | M | > 0 {\displaystyle f_{S}(\mathbf {S} )={\frac {\left|\mathbf {S} \right|^{n-p}e^{-\operatorname {tr} (\mathbf {M} ^{-1}\mathbf {S} )}}{\left|\mathbf {M} \right|^{n}\cdot {\mathcal {C}}{\widetilde {\Gamma }}_{p}(n)}},\;\;\;n\geq p,\;\;\;\left|\mathbf {M} \right|>0} {\displaystyle f_{S}(\mathbf {S} )={\frac {\left|\mathbf {S} \right|^{n-p}e^{-\operatorname {tr} (\mathbf {M} ^{-1}\mathbf {S} )}}{\left|\mathbf {M} \right|^{n}\cdot {\mathcal {C}}{\widetilde {\Gamma }}_{p}(n)}},\;\;\;n\geq p,\;\;\;\left|\mathbf {M} \right|>0}

where

C Γ ~ p ( n ) = π p ( p 1 ) / 2 j = 1 p Γ ( n j + 1 ) {\displaystyle {\mathcal {C}}{\widetilde {\Gamma }}_{p}^{}(n)=\pi ^{p(p-1)/2}\prod _{j=1}^{p}\Gamma (n-j+1)} {\displaystyle {\mathcal {C}}{\widetilde {\Gamma }}_{p}^{}(n)=\pi ^{p(p-1)/2}\prod _{j=1}^{p}\Gamma (n-j+1)}

is the complex multivariate Gamma function.[3]

Using the trace rotation rule tr ( A B C ) = tr ( C A B ) {\displaystyle \operatorname {tr} (ABC)=\operatorname {tr} (CAB)} {\displaystyle \operatorname {tr} (ABC)=\operatorname {tr} (CAB)} we also get

f S ( S ) = | S | n p | M | n C Γ ~ p ( n ) exp ( i = 1 p G i H M 1 G i ) {\displaystyle f_{S}(\mathbf {S} )={\frac {\left|\mathbf {S} \right|^{n-p}}{\left|\mathbf {M} \right|^{n}\cdot {\mathcal {C}}{\widetilde {\Gamma }}_{p}(n)}}\exp \left(-\sum _{i=1}^{p}G_{i}^{H}\mathbf {M} ^{-1}G_{i}\right)} {\displaystyle f_{S}(\mathbf {S} )={\frac {\left|\mathbf {S} \right|^{n-p}}{\left|\mathbf {M} \right|^{n}\cdot {\mathcal {C}}{\widetilde {\Gamma }}_{p}(n)}}\exp \left(-\sum _{i=1}^{p}G_{i}^{H}\mathbf {M} ^{-1}G_{i}\right)}

which is quite close to the complex multivariate pdf of G itself. The elements of G conventionally have circular symmetry such that E [ G G T ] = 0 {\displaystyle \mathbb {E} [GG^{T}]=0} {\displaystyle \mathbb {E} [GG^{T}]=0}.

Inverse Complex Wishart The distribution of the inverse complex Wishart distribution of Y = S 1 {\displaystyle \mathbf {Y} =\mathbf {S^{-1}} } {\displaystyle \mathbf {Y} =\mathbf {S^{-1}} } according to Goodman,[3] Shaman[4] is

f Y ( Y ) = | Y | ( n + p ) e tr ( M Y 1 ) | M | n C Γ ~ p ( n ) , n p , det ( Y ) > 0 {\displaystyle f_{Y}(\mathbf {Y} )={\frac {\left|\mathbf {Y} \right|^{-(n+p)}e^{-\operatorname {tr} (\mathbf {M} \mathbf {Y^{-1}} )}}{\left|\mathbf {M} \right|^{-n}\cdot {\mathcal {C}}{\widetilde {\Gamma }}_{p}(n)}},\;\;\;n\geq p,\;\;\;\det \left(\mathbf {Y} \right)>0} {\displaystyle f_{Y}(\mathbf {Y} )={\frac {\left|\mathbf {Y} \right|^{-(n+p)}e^{-\operatorname {tr} (\mathbf {M} \mathbf {Y^{-1}} )}}{\left|\mathbf {M} \right|^{-n}\cdot {\mathcal {C}}{\widetilde {\Gamma }}_{p}(n)}},\;\;\;n\geq p,\;\;\;\det \left(\mathbf {Y} \right)>0}

where M = Γ 1 {\displaystyle \mathbf {M} =\mathbf {\Gamma ^{-1}} } {\displaystyle \mathbf {M} =\mathbf {\Gamma ^{-1}} }.

If derived via a matrix inversion mapping, the result depends on the complex Jacobian determinant

C J Y ( Y 1 ) = | Y | 2 p {\displaystyle {\mathcal {C}}J_{Y}(Y^{-1})=\left|Y\right|^{-2p}} {\displaystyle {\mathcal {C}}J_{Y}(Y^{-1})=\left|Y\right|^{-2p}}

Goodman and others[5] discuss such complex Jacobians.

Eigenvalues

[edit ]

The probability distribution of the eigenvalues of the complex Hermitian Wishart distribution are given by, for example, James[6] and Edelman.[7] For a p × p {\displaystyle p\times p} {\displaystyle p\times p} matrix with ν p {\displaystyle \nu \geq p} {\displaystyle \nu \geq p} degrees of freedom we have

f ( λ 1 λ p ) = K ~ ν , p exp ( 1 2 i = 1 p λ i ) i = 1 p λ i ν p i < j ( λ i λ j ) 2 d λ 1 d λ p , λ i R 0 {\displaystyle f(\lambda _{1}\dots \lambda _{p})={\tilde {K}}_{\nu ,p}\exp \left(-{\frac {1}{2}}\sum _{i=1}^{p}\lambda _{i}\right)\prod _{i=1}^{p}\lambda _{i}^{\nu -p}\prod _{i<j}(\lambda _{i}-\lambda _{j})^{2}d\lambda _{1}\dots d\lambda _{p},\;\;\;\lambda _{i}\in \mathbb {R} \geq 0} {\displaystyle f(\lambda _{1}\dots \lambda _{p})={\tilde {K}}_{\nu ,p}\exp \left(-{\frac {1}{2}}\sum _{i=1}^{p}\lambda _{i}\right)\prod _{i=1}^{p}\lambda _{i}^{\nu -p}\prod _{i<j}(\lambda _{i}-\lambda _{j})^{2}d\lambda _{1}\dots d\lambda _{p},\;\;\;\lambda _{i}\in \mathbb {R} \geq 0}

where

K ~ ν , p 1 = 2 p ν i = 1 p Γ ( ν i + 1 ) Γ ( p i + 1 ) {\displaystyle {\tilde {K}}_{\nu ,p}^{-1}=2^{p\nu }\prod _{i=1}^{p}\Gamma (\nu -i+1)\Gamma (p-i+1)} {\displaystyle {\tilde {K}}_{\nu ,p}^{-1}=2^{p\nu }\prod _{i=1}^{p}\Gamma (\nu -i+1)\Gamma (p-i+1)}

Note however that Edelman uses the "mathematical" definition of a complex normal variable Z = X + i Y {\displaystyle Z=X+iY} {\displaystyle Z=X+iY} where iid X and Y each have unit variance and the variance of Z = E ( X 2 + Y 2 ) = 2 {\displaystyle Z=\mathbf {E} \left(X^{2}+Y^{2}\right)=2} {\displaystyle Z=\mathbf {E} \left(X^{2}+Y^{2}\right)=2}. For the definition more common in engineering circles, with X and Y each having 0.5 variance, the eigenvalues are reduced by a factor of 2.

This spectral density can be integrated to give the probability that all eigenvalues of a Wishart random matrix lie within an interval.[8]

The spectral density can be also integrated to give the marginal distribution of eigenvalues.[9] [10]

There are also approximations for marginal eigenvalue distributions. From Edelman we have that if S is a sample from the complex Wishart distribution with p = κ ν , 0 κ 1 {\displaystyle p=\kappa \nu ,\;\;0\leq \kappa \leq 1} {\displaystyle p=\kappa \nu ,\;\;0\leq \kappa \leq 1} such that S p × p C W ( 2 I , p κ ) {\displaystyle S_{p\times p}\sim {\mathcal {CW}}\left(2\mathbf {I} ,{\frac {p}{\kappa }}\right)} {\displaystyle S_{p\times p}\sim {\mathcal {CW}}\left(2\mathbf {I} ,{\frac {p}{\kappa }}\right)} then in the limit p {\displaystyle p\rightarrow \infty } {\displaystyle p\rightarrow \infty } the distribution of eigenvalues converges in probability to the Marchenko–Pastur distribution function

p λ ( λ ) = [ λ / 2 ( κ 1 ) 2 ] [ κ + 1 ) 2 λ / 2 ] 4 π κ ( λ / 2 ) , 2 ( κ 1 ) 2 λ 2 ( κ + 1 ) 2 , 0 κ 1 {\displaystyle p_{\lambda }(\lambda )={\frac {\sqrt {[\lambda /2-({\sqrt {\kappa }}-1)^{2}][{\sqrt {\kappa }}+1)^{2}-\lambda /2]}}{4\pi \kappa (\lambda /2)}},\;\;\;2({\sqrt {\kappa }}-1)^{2}\leq \lambda \leq 2({\sqrt {\kappa }}+1)^{2},\;\;\;0\leq \kappa \leq 1} {\displaystyle p_{\lambda }(\lambda )={\frac {\sqrt {[\lambda /2-({\sqrt {\kappa }}-1)^{2}][{\sqrt {\kappa }}+1)^{2}-\lambda /2]}}{4\pi \kappa (\lambda /2)}},\;\;\;2({\sqrt {\kappa }}-1)^{2}\leq \lambda \leq 2({\sqrt {\kappa }}+1)^{2},\;\;\;0\leq \kappa \leq 1}

This distribution becomes identical to the real Wishart case, by replacing λ {\displaystyle \lambda } {\displaystyle \lambda } by 2 λ {\displaystyle 2\lambda } {\displaystyle 2\lambda }, on account of the doubled sample variance, so in the case S p × p C W ( I , p κ ) {\displaystyle S_{p\times p}\sim {\mathcal {CW}}\left(\mathbf {I} ,{\frac {p}{\kappa }}\right)} {\displaystyle S_{p\times p}\sim {\mathcal {CW}}\left(\mathbf {I} ,{\frac {p}{\kappa }}\right)}, the pdf reduces to the real Wishart one:

p λ ( λ ) = [ λ ( κ 1 ) 2 ] [ κ + 1 ) 2 λ ] 2 π κ λ , ( κ 1 ) 2 λ ( κ + 1 ) 2 , 0 κ 1 {\displaystyle p_{\lambda }(\lambda )={\frac {\sqrt {[\lambda -({\sqrt {\kappa }}-1)^{2}][{\sqrt {\kappa }}+1)^{2}-\lambda ]}}{2\pi \kappa \lambda }},\;\;\;({\sqrt {\kappa }}-1)^{2}\leq \lambda \leq ({\sqrt {\kappa }}+1)^{2},\;\;\;0\leq \kappa \leq 1} {\displaystyle p_{\lambda }(\lambda )={\frac {\sqrt {[\lambda -({\sqrt {\kappa }}-1)^{2}][{\sqrt {\kappa }}+1)^{2}-\lambda ]}}{2\pi \kappa \lambda }},\;\;\;({\sqrt {\kappa }}-1)^{2}\leq \lambda \leq ({\sqrt {\kappa }}+1)^{2},\;\;\;0\leq \kappa \leq 1}

A special case is κ = 1 {\displaystyle \kappa =1} {\displaystyle \kappa =1}

p λ ( λ ) = 1 4 π ( 8 λ λ ) 1 2 , 0 λ 8 {\displaystyle p_{\lambda }(\lambda )={\frac {1}{4\pi }}\left({\frac {8-\lambda }{\lambda }}\right)^{\frac {1}{2}},\;0\leq \lambda \leq 8} {\displaystyle p_{\lambda }(\lambda )={\frac {1}{4\pi }}\left({\frac {8-\lambda }{\lambda }}\right)^{\frac {1}{2}},\;0\leq \lambda \leq 8}

or, if a Var(Z) = 1 convention is used then

p λ ( λ ) = 1 2 π ( 4 λ λ ) 1 2 , 0 λ 4 {\displaystyle p_{\lambda }(\lambda )={\frac {1}{2\pi }}\left({\frac {4-\lambda }{\lambda }}\right)^{\frac {1}{2}},\;0\leq \lambda \leq 4} {\displaystyle p_{\lambda }(\lambda )={\frac {1}{2\pi }}\left({\frac {4-\lambda }{\lambda }}\right)^{\frac {1}{2}},\;0\leq \lambda \leq 4}.

The Wigner semicircle distribution arises by making the change of variable y = ± λ {\displaystyle y=\pm {\sqrt {\lambda }}} {\displaystyle y=\pm {\sqrt {\lambda }}} in the latter and selecting the sign of y randomly yielding pdf

p y ( y ) = 1 2 π ( 4 y 2 ) 1 2 , 2 y 2 {\displaystyle p_{y}(y)={\frac {1}{2\pi }}\left(4-y^{2}\right)^{\frac {1}{2}},\;-2\leq y\leq 2} {\displaystyle p_{y}(y)={\frac {1}{2\pi }}\left(4-y^{2}\right)^{\frac {1}{2}},\;-2\leq y\leq 2}

In place of the definition of the Wishart sample matrix above, S p × p = j = 1 ν G j G j H {\displaystyle S_{p\times p}=\sum _{j=1}^{\nu }G_{j}G_{j}^{H}} {\displaystyle S_{p\times p}=\sum _{j=1}^{\nu }G_{j}G_{j}^{H}}, we can define a Gaussian ensemble

G i , j = [ G 1 G ν ] C p × ν {\displaystyle \mathbf {G} _{i,j}=[G_{1}\dots G_{\nu }]\in \mathbb {C} ^{,円p\times \nu }} {\displaystyle \mathbf {G} _{i,j}=[G_{1}\dots G_{\nu }]\in \mathbb {C} ^{,円p\times \nu }}

such that S is the matrix product S = G G H {\displaystyle S=\mathbf {G} \mathbf {G^{H}} } {\displaystyle S=\mathbf {G} \mathbf {G^{H}} }. The real non-negative eigenvalues of S are then the modulus-squared singular values of the ensemble G {\displaystyle \mathbf {G} } {\displaystyle \mathbf {G} } and the moduli of the latter have a quarter-circle distribution.

In the case κ > 1 {\displaystyle \kappa >1} {\displaystyle \kappa >1} such that ν < p {\displaystyle \nu <p} {\displaystyle \nu <p} then S {\displaystyle S} {\displaystyle S} is rank deficient with at least p ν {\displaystyle p-\nu } {\displaystyle p-\nu } null eigenvalues. However the singular values of G {\displaystyle \mathbf {G} } {\displaystyle \mathbf {G} } are invariant under transposition so, redefining S ~ = G H G {\displaystyle {\tilde {S}}=\mathbf {G^{H}} \mathbf {G} } {\displaystyle {\tilde {S}}=\mathbf {G^{H}} \mathbf {G} }, then S ~ ν × ν {\displaystyle {\tilde {S}}_{\nu \times \nu }} {\displaystyle {\tilde {S}}_{\nu \times \nu }} has a complex Wishart distribution, has full rank almost certainly, and eigenvalue distributions can be obtained from S ~ {\displaystyle {\tilde {S}}} {\displaystyle {\tilde {S}}} in lieu, using all the previous equations.

In cases where the columns of G {\displaystyle \mathbf {G} } {\displaystyle \mathbf {G} } are not linearly independent and S ~ ν × ν {\displaystyle {\tilde {S}}_{\nu \times \nu }} {\displaystyle {\tilde {S}}_{\nu \times \nu }} remains singular, a QR decomposition can be used to reduce G to a product like

G = Q [ R 0 ] {\displaystyle \mathbf {G} =Q{\begin{bmatrix}\mathbf {R} \0円\end{bmatrix}}} {\displaystyle \mathbf {G} =Q{\begin{bmatrix}\mathbf {R} \0円\end{bmatrix}}}

such that R q × q , q ν {\displaystyle \mathbf {R} _{q\times q},\;\;q\leq \nu } {\displaystyle \mathbf {R} _{q\times q},\;\;q\leq \nu } is upper triangular with full rank and S ~ ~ q × q = R H R {\displaystyle {\tilde {\tilde {S}}}_{q\times q}=\mathbf {R^{H}} \mathbf {R} } {\displaystyle {\tilde {\tilde {S}}}_{q\times q}=\mathbf {R^{H}} \mathbf {R} } has further reduced dimensionality.

The eigenvalues are of practical significance in radio communications theory since they define the Shannon channel capacity of a ν × p {\displaystyle \nu \times p} {\displaystyle \nu \times p} MIMO wireless channel which, to first approximation, is modeled as a zero-mean complex Gaussian ensemble.

References

[edit ]
  1. ^ N. R. Goodman (1963). "The distribution of the determinant of a complex Wishart distributed matrix". The Annals of Mathematical Statistics. 34 (1): 178–180. doi:10.1214/aoms/1177704251 .
  2. ^ Chiani, M.; Win, M. Z.; Zanella, A. (2003). "On the capacity of spatially correlated MIMO Rayleigh-fading channels". IEEE Transactions on Information Theory. 49 (10): 2363–2371. Bibcode:2003ITIT...49.2363C. doi:10.1109/TIT.2003.817437.
  3. ^ a b Goodman, N R (1963). "Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction)". Ann. Math. Statist. 34: 152–177. doi:10.1214/aoms/1177704250 .
  4. ^ Shaman, Paul (1980). "The Inverted Complex Wishart Distribution and Its Application to Spectral Estimation". Journal of Multivariate Analysis. 10: 51–59. doi:10.1016/0047-259X(80)90081-0 .
  5. ^ Cross, D J (May 2008). "On the Relation between Real and Complex Jacobian Determinants" (PDF). drexel.edu.
  6. ^ James, A. T. (1964). "Distributions of Matrix Variates and Latent Roots Derived from Normal Samples". Ann. Math. Statist. 35 (2): 475–501. doi:10.1214/aoms/1177703550 .
  7. ^ Edelman, Alan (October 1988). "Eigenvalues and Condition Numbers of Random Matrices" (PDF). SIAM J. Matrix Anal. Appl. 9 (4): 543–560. doi:10.1137/0609045. hdl:1721.1/14322 .
  8. ^ Chiani, M. (2017). "On the probability that all eigenvalues of Gaussian, Wishart, and double Wishart random matrices lie within an interval". IEEE Transactions on Information Theory. 63 (7): 4521–4531. arXiv:1502.04189 . Bibcode:2017ITIT...63.4521C. doi:10.1109/TIT.2017.2694846 .
  9. ^ Zanella, A.; Chiani, M.; Win, M. Z. (2009). "On the Marginal Distribution of the Eigenvalues of Wishart Matrices". IEEE Transactions on Communications. 57 (4): 1050–1060. Bibcode:2009ITCom..57.1050Z. doi:10.1109/TCOMM.2009年04月07日0143.
  10. ^ Chiani, M.; Zanella, A. (2020). "On the Distribution of an Arbitrary Subset of the Eigenvalues for some Finite Dimensional Random Matrices". Random Matrices: Theory and Applications. 9 (1): 1–25. arXiv:2001.00519 . doi:10.1142/S2010326320400043.
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families

AltStyle によって変換されたページ (->オリジナル) /