Jump to content
Wikipedia The Free Encyclopedia

Beta negative binomial distribution

From Wikipedia, the free encyclopedia
Compound probability distribution
Beta Negative Binomial
Parameters α > 0 {\displaystyle \alpha >0} {\displaystyle \alpha >0} shape (real)
β > 0 {\displaystyle \beta >0} {\displaystyle \beta >0} shape (real)
r > 0 {\displaystyle r>0} {\displaystyle r>0} — number of successes until the experiment is stopped (integer but can be extended to real)
Support k { 0 , 1 , 2 , } {\displaystyle k\in \{0,1,2,\ldots \}} {\displaystyle k\in \{0,1,2,\ldots \}}
PMF B ( r + k , α + β ) B ( r , α ) Γ ( k + β ) k ! Γ ( β ) {\displaystyle {\frac {\mathrm {B} (r+k,\alpha +\beta )}{\mathrm {B} (r,\alpha )}}{\frac {\Gamma (k+\beta )}{k!\;\Gamma (\beta )}}} {\displaystyle {\frac {\mathrm {B} (r+k,\alpha +\beta )}{\mathrm {B} (r,\alpha )}}{\frac {\Gamma (k+\beta )}{k!\;\Gamma (\beta )}}}
Mean { r β α 1 if   α > 1 otherwise   {\displaystyle {\begin{cases}{\frac {r\beta }{\alpha -1}}&{\text{if}}\ \alpha >1\\\infty &{\text{otherwise}}\ \end{cases}}} {\displaystyle {\begin{cases}{\frac {r\beta }{\alpha -1}}&{\text{if}}\ \alpha >1\\\infty &{\text{otherwise}}\ \end{cases}}}
Variance { r β ( r + α 1 ) ( β + α 1 ) ( α 2 ) ( α 1 ) 2 if   α > 2 otherwise   {\displaystyle {\begin{cases}{\frac {r\beta (r+\alpha -1)(\beta +\alpha -1)}{(\alpha -2){(\alpha -1)}^{2}}}&{\text{if}}\ \alpha >2\\\infty &{\text{otherwise}}\ \end{cases}}} {\displaystyle {\begin{cases}{\frac {r\beta (r+\alpha -1)(\beta +\alpha -1)}{(\alpha -2){(\alpha -1)}^{2}}}&{\text{if}}\ \alpha >2\\\infty &{\text{otherwise}}\ \end{cases}}}
Skewness { ( 2 r + α 1 ) ( 2 β + α 1 ) ( α 3 ) r β ( r + α 1 ) ( β + α 1 ) α 2 if   α > 3 otherwise   {\displaystyle {\begin{cases}{\frac {(2r+\alpha -1)(2\beta +\alpha -1)}{(\alpha -3){\sqrt {\frac {r\beta (r+\alpha -1)(\beta +\alpha -1)}{\alpha -2}}}}}&{\text{if}}\ \alpha >3\\\infty &{\text{otherwise}}\ \end{cases}}} {\displaystyle {\begin{cases}{\frac {(2r+\alpha -1)(2\beta +\alpha -1)}{(\alpha -3){\sqrt {\frac {r\beta (r+\alpha -1)(\beta +\alpha -1)}{\alpha -2}}}}}&{\text{if}}\ \alpha >3\\\infty &{\text{otherwise}}\ \end{cases}}}
MGF does not exist
CF 2 F 1 ( β , r ; α + β + r ; e i t ) ( α ) ( r ) ( α + β ) ( r ) {\displaystyle {}_{2}F_{1}(\beta ,r;\alpha +\beta +r;e^{it}){\frac {(\alpha )^{(r)}}{(\alpha +\beta )^{(r)}}}\!} {\displaystyle {}_{2}F_{1}(\beta ,r;\alpha +\beta +r;e^{it}){\frac {(\alpha )^{(r)}}{(\alpha +\beta )^{(r)}}}\!} where ( x ) ( r ) = Γ ( x + r ) Γ ( x ) {\displaystyle (x)^{(r)}={\frac {\Gamma (x+r)}{\Gamma (x)}}} {\displaystyle (x)^{(r)}={\frac {\Gamma (x+r)}{\Gamma (x)}}} is the Pochhammer symbol and 2 F 1 {\displaystyle {}_{2}F_{1}} {\displaystyle {}_{2}F_{1}} is the hypergeometric function.
PGF 2 F 1 ( β , r ; α + β + r ; z ) ( α ) ( r ) ( α + β ) ( r ) {\displaystyle {}_{2}F_{1}(\beta ,r;\alpha +\beta +r;z){\frac {(\alpha )^{(r)}}{(\alpha +\beta )^{(r)}}}} {\displaystyle {}_{2}F_{1}(\beta ,r;\alpha +\beta +r;z){\frac {(\alpha )^{(r)}}{(\alpha +\beta )^{(r)}}}}

In probability theory, a beta negative binomial distribution is the probability distribution of a discrete random variable  X {\displaystyle X} {\displaystyle X} equal to the number of failures needed to get r {\displaystyle r} {\displaystyle r} successes in a sequence of independent Bernoulli trials. The probability p {\displaystyle p} {\displaystyle p} of success on each trial stays constant within any given experiment but varies across different experiments following a beta distribution. Thus the distribution is a compound probability distribution.

This distribution has also been called both the inverse Markov-Pólya distribution and the generalized Waring distribution[1] or simply abbreviated as the BNB distribution. A shifted form of the distribution has been called the beta-Pascal distribution.[1]

If parameters of the beta distribution are α {\displaystyle \alpha } {\displaystyle \alpha } and β {\displaystyle \beta } {\displaystyle \beta }, and if

X p N B ( r , p ) , {\displaystyle X\mid p\sim \mathrm {NB} (r,p),} {\displaystyle X\mid p\sim \mathrm {NB} (r,p),}

where

p B ( α , β ) , {\displaystyle p\sim {\textrm {B}}(\alpha ,\beta ),} {\displaystyle p\sim {\textrm {B}}(\alpha ,\beta ),}

then the marginal distribution of X {\displaystyle X} {\displaystyle X} (i.e. the posterior predictive distribution) is a beta negative binomial distribution:

X B N B ( r , α , β ) . {\displaystyle X\sim \mathrm {BNB} (r,\alpha ,\beta ).} {\displaystyle X\sim \mathrm {BNB} (r,\alpha ,\beta ).}

In the above, N B ( r , p ) {\displaystyle \mathrm {NB} (r,p)} {\displaystyle \mathrm {NB} (r,p)} is the negative binomial distribution and B ( α , β ) {\displaystyle {\textrm {B}}(\alpha ,\beta )} {\displaystyle {\textrm {B}}(\alpha ,\beta )} is the beta distribution.

Definition and derivation

[edit ]

Denoting f X | p ( k | q ) , f p ( q | α , β ) {\displaystyle f_{X|p}(k|q),f_{p}(q|\alpha ,\beta )} {\displaystyle f_{X|p}(k|q),f_{p}(q|\alpha ,\beta )} the densities of the negative binomial and beta distributions respectively, we obtain the PMF f ( k | α , β , r ) {\displaystyle f(k|\alpha ,\beta ,r)} {\displaystyle f(k|\alpha ,\beta ,r)} of the BNB distribution by marginalization:

f ( k | α , β , r ) = 0 1 f X | p ( k | r , q ) f p ( q | α , β ) d q = 0 1 ( k + r 1 k ) ( 1 q ) k q r q α 1 ( 1 q ) β 1 B ( α , β ) d q = 1 B ( α , β ) ( k + r 1 k ) 0 1 q α + r 1 ( 1 q ) β + k 1 d q {\displaystyle {\begin{aligned}f(k|\alpha ,\beta ,r)\;=&\;\int _{0}^{1}f_{X|p}(k|r,q)\cdot f_{p}(q|\alpha ,\beta )\mathrm {d} q\\=&\;\int _{0}^{1}{\binom {k+r-1}{k}}(1-q)^{k}q^{r}\cdot {\frac {q^{\alpha -1}(1-q)^{\beta -1}}{\mathrm {B} (\alpha ,\beta )}}\mathrm {d} q\\=&\;{\frac {1}{\mathrm {B} (\alpha ,\beta )}}{\binom {k+r-1}{k}}\int _{0}^{1}q^{\alpha +r-1}(1-q)^{\beta +k-1}\mathrm {d} q\end{aligned}}} {\displaystyle {\begin{aligned}f(k|\alpha ,\beta ,r)\;=&\;\int _{0}^{1}f_{X|p}(k|r,q)\cdot f_{p}(q|\alpha ,\beta )\mathrm {d} q\\=&\;\int _{0}^{1}{\binom {k+r-1}{k}}(1-q)^{k}q^{r}\cdot {\frac {q^{\alpha -1}(1-q)^{\beta -1}}{\mathrm {B} (\alpha ,\beta )}}\mathrm {d} q\\=&\;{\frac {1}{\mathrm {B} (\alpha ,\beta )}}{\binom {k+r-1}{k}}\int _{0}^{1}q^{\alpha +r-1}(1-q)^{\beta +k-1}\mathrm {d} q\end{aligned}}}

Noting that the integral evaluates to:

0 1 q α + r 1 ( 1 q ) β + k 1 d q = Γ ( α + r ) Γ ( β + k ) Γ ( α + β + k + r ) {\displaystyle \int _{0}^{1}q^{\alpha +r-1}(1-q)^{\beta +k-1}\mathrm {d} q={\frac {\Gamma (\alpha +r)\Gamma (\beta +k)}{\Gamma (\alpha +\beta +k+r)}}} {\displaystyle \int _{0}^{1}q^{\alpha +r-1}(1-q)^{\beta +k-1}\mathrm {d} q={\frac {\Gamma (\alpha +r)\Gamma (\beta +k)}{\Gamma (\alpha +\beta +k+r)}}}

we can arrive at the following formulas by relatively simple manipulations.

If r {\displaystyle r} {\displaystyle r} is an integer, then the PMF can be written in terms of the beta function,:

f ( k | α , β , r ) = ( r + k 1 k ) B ( α + r , β + k ) B ( α , β ) {\displaystyle f(k|\alpha ,\beta ,r)={\binom {r+k-1}{k}}{\frac {\mathrm {B} (\alpha +r,\beta +k)}{\mathrm {B} (\alpha ,\beta )}}} {\displaystyle f(k|\alpha ,\beta ,r)={\binom {r+k-1}{k}}{\frac {\mathrm {B} (\alpha +r,\beta +k)}{\mathrm {B} (\alpha ,\beta )}}}.

More generally, the PMF can be written

f ( k | α , β , r ) = Γ ( r + k ) k ! Γ ( r ) B ( α + r , β + k ) B ( α , β ) {\displaystyle f(k|\alpha ,\beta ,r)={\frac {\Gamma (r+k)}{k!\;\Gamma (r)}}{\frac {\mathrm {B} (\alpha +r,\beta +k)}{\mathrm {B} (\alpha ,\beta )}}} {\displaystyle f(k|\alpha ,\beta ,r)={\frac {\Gamma (r+k)}{k!\;\Gamma (r)}}{\frac {\mathrm {B} (\alpha +r,\beta +k)}{\mathrm {B} (\alpha ,\beta )}}}

or

f ( k | α , β , r ) = B ( r + k , α + β ) B ( r , α ) Γ ( k + β ) k ! Γ ( β ) {\displaystyle f(k|\alpha ,\beta ,r)={\frac {\mathrm {B} (r+k,\alpha +\beta )}{\mathrm {B} (r,\alpha )}}{\frac {\Gamma (k+\beta )}{k!\;\Gamma (\beta )}}} {\displaystyle f(k|\alpha ,\beta ,r)={\frac {\mathrm {B} (r+k,\alpha +\beta )}{\mathrm {B} (r,\alpha )}}{\frac {\Gamma (k+\beta )}{k!\;\Gamma (\beta )}}}.

PMF expressed with Gamma

[edit ]

Using the properties of the Beta function, the PMF with integer r {\displaystyle r} {\displaystyle r} can be rewritten as:

f ( k | α , β , r ) = ( r + k 1 k ) Γ ( α + r ) Γ ( β + k ) Γ ( α + β ) Γ ( α + r + β + k ) Γ ( α ) Γ ( β ) {\displaystyle f(k|\alpha ,\beta ,r)={\binom {r+k-1}{k}}{\frac {\Gamma (\alpha +r)\Gamma (\beta +k)\Gamma (\alpha +\beta )}{\Gamma (\alpha +r+\beta +k)\Gamma (\alpha )\Gamma (\beta )}}} {\displaystyle f(k|\alpha ,\beta ,r)={\binom {r+k-1}{k}}{\frac {\Gamma (\alpha +r)\Gamma (\beta +k)\Gamma (\alpha +\beta )}{\Gamma (\alpha +r+\beta +k)\Gamma (\alpha )\Gamma (\beta )}}}.

More generally, the PMF can be written as

f ( k | α , β , r ) = Γ ( r + k ) k ! Γ ( r ) Γ ( α + r ) Γ ( β + k ) Γ ( α + β ) Γ ( α + r + β + k ) Γ ( α ) Γ ( β ) {\displaystyle f(k|\alpha ,\beta ,r)={\frac {\Gamma (r+k)}{k!\;\Gamma (r)}}{\frac {\Gamma (\alpha +r)\Gamma (\beta +k)\Gamma (\alpha +\beta )}{\Gamma (\alpha +r+\beta +k)\Gamma (\alpha )\Gamma (\beta )}}} {\displaystyle f(k|\alpha ,\beta ,r)={\frac {\Gamma (r+k)}{k!\;\Gamma (r)}}{\frac {\Gamma (\alpha +r)\Gamma (\beta +k)\Gamma (\alpha +\beta )}{\Gamma (\alpha +r+\beta +k)\Gamma (\alpha )\Gamma (\beta )}}}.

PMF expressed with the rising Pochammer symbol

[edit ]

The PMF is often also presented in terms of the Pochammer symbol for integer r {\displaystyle r} {\displaystyle r}

f ( k | α , β , r ) = r ( k ) α ( r ) β ( k ) k ! ( α + β ) ( r + k ) {\displaystyle f(k|\alpha ,\beta ,r)={\frac {r^{(k)}\alpha ^{(r)}\beta ^{(k)}}{k!(\alpha +\beta )^{(r+k)}}}} {\displaystyle f(k|\alpha ,\beta ,r)={\frac {r^{(k)}\alpha ^{(r)}\beta ^{(k)}}{k!(\alpha +\beta )^{(r+k)}}}}

Properties

[edit ]

Factorial Moments

[edit ]

The k-th factorial moment of a beta negative binomial random variable X is defined for k < α {\displaystyle k<\alpha } {\displaystyle k<\alpha } and in this case is equal to

E [ ( X ) k ] = Γ ( r + k ) Γ ( r ) Γ ( β + k ) Γ ( β ) Γ ( α k ) Γ ( α ) . {\displaystyle \operatorname {E} {\bigl [}(X)_{k}{\bigr ]}={\frac {\Gamma (r+k)}{\Gamma (r)}}{\frac {\Gamma (\beta +k)}{\Gamma (\beta )}}{\frac {\Gamma (\alpha -k)}{\Gamma (\alpha )}}.} {\displaystyle \operatorname {E} {\bigl [}(X)_{k}{\bigr ]}={\frac {\Gamma (r+k)}{\Gamma (r)}}{\frac {\Gamma (\beta +k)}{\Gamma (\beta )}}{\frac {\Gamma (\alpha -k)}{\Gamma (\alpha )}}.}

Non-identifiable

[edit ]

The beta negative binomial is non-identifiable which can be seen easily by simply swapping r {\displaystyle r} {\displaystyle r} and β {\displaystyle \beta } {\displaystyle \beta } in the above density or characteristic function and noting that it is unchanged. Thus estimation demands that a constraint be placed on r {\displaystyle r} {\displaystyle r}, β {\displaystyle \beta } {\displaystyle \beta } or both.

Relation to other distributions

[edit ]

The beta negative binomial distribution contains the beta geometric distribution as a special case when either r = 1 {\displaystyle r=1} {\displaystyle r=1} or β = 1 {\displaystyle \beta =1} {\displaystyle \beta =1}. It can therefore approximate the geometric distribution arbitrarily well. It also approximates the negative binomial distribution arbitrary well for large α {\displaystyle \alpha } {\displaystyle \alpha }. It can therefore approximate the Poisson distribution arbitrarily well for large α {\displaystyle \alpha } {\displaystyle \alpha }, β {\displaystyle \beta } {\displaystyle \beta } and r {\displaystyle r} {\displaystyle r}.

Heavy tailed

[edit ]

By Stirling's approximation to the beta function, it can be easily shown that for large k {\displaystyle k} {\displaystyle k}

f ( k | α , β , r ) Γ ( α + r ) Γ ( r ) B ( α , β ) k r 1 ( β + k ) r + α {\displaystyle f(k|\alpha ,\beta ,r)\sim {\frac {\Gamma (\alpha +r)}{\Gamma (r)\mathrm {B} (\alpha ,\beta )}}{\frac {k^{r-1}}{(\beta +k)^{r+\alpha }}}} {\displaystyle f(k|\alpha ,\beta ,r)\sim {\frac {\Gamma (\alpha +r)}{\Gamma (r)\mathrm {B} (\alpha ,\beta )}}{\frac {k^{r-1}}{(\beta +k)^{r+\alpha }}}}

which implies that the beta negative binomial distribution is heavy tailed and that moments less than or equal to α {\displaystyle \alpha } {\displaystyle \alpha } do not exist.

Beta geometric distribution

[edit ]

The beta geometric distribution is an important special case of the beta negative binomial distribution occurring for r = 1 {\displaystyle r=1} {\displaystyle r=1}. In this case the pmf simplifies to

f ( k | α , β ) = B ( α + 1 , β + k ) B ( α , β ) {\displaystyle f(k|\alpha ,\beta )={\frac {\mathrm {B} (\alpha +1,\beta +k)}{\mathrm {B} (\alpha ,\beta )}}} {\displaystyle f(k|\alpha ,\beta )={\frac {\mathrm {B} (\alpha +1,\beta +k)}{\mathrm {B} (\alpha ,\beta )}}}.

This distribution is used in some Buy Till you Die (BTYD) models.

Further, when β = 1 {\displaystyle \beta =1} {\displaystyle \beta =1} the beta geometric reduces to the Yule–Simon distribution. However, it is more common to define the Yule-Simon distribution in terms of a shifted version of the beta geometric. In particular, if X B G ( α , 1 ) {\displaystyle X\sim BG(\alpha ,1)} {\displaystyle X\sim BG(\alpha ,1)} then X + 1 Y S ( α ) {\displaystyle X+1\sim YS(\alpha )} {\displaystyle X+1\sim YS(\alpha )}.

Beta negative binomial as a Pólya urn model

[edit ]

In the case when the 3 parameters r , α {\displaystyle r,\alpha } {\displaystyle r,\alpha } and β {\displaystyle \beta } {\displaystyle \beta } are positive integers, the Beta negative binomial can also be motivated by an urn model - or more specifically a basic Pólya urn model. Consider an urn initially containing α {\displaystyle \alpha } {\displaystyle \alpha } red balls (the stopping color) and β {\displaystyle \beta } {\displaystyle \beta } blue balls. At each step of the model, a ball is drawn at random from the urn and replaced, along with one additional ball of the same color. The process is repeated over and over, until r {\displaystyle r} {\displaystyle r} red colored balls are drawn. The random variable X {\displaystyle X} {\displaystyle X} of observed draws of blue balls are distributed according to a B N B ( r , α , β ) {\displaystyle \mathrm {BNB} (r,\alpha ,\beta )} {\displaystyle \mathrm {BNB} (r,\alpha ,\beta )}. Note, at the end of the experiment, the urn always contains the fixed number r + α {\displaystyle r+\alpha } {\displaystyle r+\alpha } of red balls while containing the random number X + β {\displaystyle X+\beta } {\displaystyle X+\beta } blue balls.

By the non-identifiability property, X {\displaystyle X} {\displaystyle X} can be equivalently generated with the urn initially containing α {\displaystyle \alpha } {\displaystyle \alpha } red balls (the stopping color) and r {\displaystyle r} {\displaystyle r} blue balls and stopping when β {\displaystyle \beta } {\displaystyle \beta } red balls are observed.


See also

[edit ]

Notes

[edit ]
  1. ^ a b Johnson et al. (1993)

References

[edit ]
[edit ]
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families

AltStyle によって変換されたページ (->オリジナル) /