Jump to content
Wikipedia The Free Encyclopedia

Decagonal number

From Wikipedia, the free encyclopedia
Figurate number representing a decagon
This article needs additional citations for verification . Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Decagonal number" – news · newspapers · books · scholar · JSTOR
(August 2025) (Learn how and when to remove this message)

In mathematics, a decagonal number is a figurate number that extends the concept of triangular and square numbers to the decagon (a ten-sided polygon).[1] However, unlike the triangular and square numbers, the patterns involved in the construction of decagonal numbers are not rotationally symmetrical. Specifically, the n-th decagonal numbers counts the dots in a pattern of n nested decagons, all sharing a common corner, where the ith decagon in the pattern has sides made of i dots spaced one unit apart from each other. The n-th decagonal number is given by the following formula

d n = 4 n 2 3 n {\displaystyle d_{n}=4n^{2}-3n} {\displaystyle d_{n}=4n^{2}-3n}.[2]

The first few decagonal numbers are:

0, 1, 10, 27, 52, 85, 126, 175, 232, 297, 370, 451, 540, 637, 742, 855, 976, 1105, 1242, 1387, 1540, 1701, 1870, 2047, 2232, 2425, 2626, 2835, 3052, 3277, 3510, 3751, 4000, 4257, 4522, 4795, 5076, 5365, 5662, 5967, 6280, 6601, 6930, 7267, 7612, 7965, 8326 (sequence A001107 in the OEIS).

The nth decagonal number can also be calculated by adding the square of n to thrice the (n−1)th pronic number or, to put it algebraically, as

D n = n 2 + 3 ( n 2 n ) {\displaystyle D_{n}=n^{2}+3\left(n^{2}-n\right)} {\displaystyle D_{n}=n^{2}+3\left(n^{2}-n\right)}.

Properties

[edit ]
  • Decagonal numbers consistently alternate parity.
  • D n {\displaystyle D_{n}} {\displaystyle D_{n}} is the sum of the first n {\displaystyle n} {\displaystyle n} natural numbers congruent to 1 mod 8.
  • D n {\displaystyle D_{n}} {\displaystyle D_{n}} is number of divisors of 48 n 1 {\displaystyle 48^{n-1}} {\displaystyle 48^{n-1}}.
  • The only decagonal numbers that are square numbers are 0 and 1.
  • The decagonal numbers follow the following recurrence relations:
D n = D n 1 + 8 n 7 , D 0 = 0 {\displaystyle D_{n}=D_{n-1}+8n-7,D_{0}=0} {\displaystyle D_{n}=D_{n-1}+8n-7,D_{0}=0}
D n = 2 D n 1 D n 2 + 8 , D 0 = 0 , D 1 = 1 {\displaystyle D_{n}=2D_{n-1}-D_{n-2}+8,D_{0}=0,D_{1}=1} {\displaystyle D_{n}=2D_{n-1}-D_{n-2}+8,D_{0}=0,D_{1}=1}
D n = 3 D n 1 3 D n 2 + D n 3 , D 0 = 0 , D 1 = 1 , D 2 = 10 {\displaystyle D_{n}=3D_{n-1}-3D_{n-2}+D_{n-3},D_{0}=0,D_{1}=1,D_{2}=10} {\displaystyle D_{n}=3D_{n-1}-3D_{n-2}+D_{n-3},D_{0}=0,D_{1}=1,D_{2}=10}

Sum of reciprocals

[edit ]

The sum of the reciprocals of the decagonal numbers admits a simple closed form: n = 1 1 4 n 2 3 n + n = 1 1 n ( 4 n 3 ) = ln ( 2 ) + π 6 . {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{4n^{2}-3n}}+\sum _{n=1}^{\infty }{\frac {1}{n\left(4n-3\right)}}=\ln \left(2\right)+{\frac {\pi }{6}}.} {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{4n^{2}-3n}}+\sum _{n=1}^{\infty }{\frac {1}{n\left(4n-3\right)}}=\ln \left(2\right)+{\frac {\pi }{6}}.}

Proof

[edit ]

This derivation rests upon the method of adding a "constructive zero": n = 1 1 n ( 4 n 3 ) = 4 3 n = 1 ( 1 4 n 3 1 4 n ) = 2 3 n = 1 ( 2 4 n 3 2 4 n + ( 1 4 n 1 1 4 n 2 ) ( 1 4 n 1 1 4 n 2 ) ) {\displaystyle {\begin{aligned}\sum _{n=1}^{\infty }{\frac {1}{n\left(4n-3\right)}}&{}={\frac {4}{3}}\sum _{n=1}^{\infty }\left({\frac {1}{4n-3}}-{\frac {1}{4n}}\right)\\&={\frac {2}{3}}\sum _{n=1}^{\infty }\left({\frac {2}{4n-3}}-{\frac {2}{4n}}+\left({\frac {1}{4n-1}}-{\frac {1}{4n-2}}\right)-\left({\frac {1}{4n-1}}-{\frac {1}{4n-2}}\right)\right)\end{aligned}}} {\displaystyle {\begin{aligned}\sum _{n=1}^{\infty }{\frac {1}{n\left(4n-3\right)}}&{}={\frac {4}{3}}\sum _{n=1}^{\infty }\left({\frac {1}{4n-3}}-{\frac {1}{4n}}\right)\\&={\frac {2}{3}}\sum _{n=1}^{\infty }\left({\frac {2}{4n-3}}-{\frac {2}{4n}}+\left({\frac {1}{4n-1}}-{\frac {1}{4n-2}}\right)-\left({\frac {1}{4n-1}}-{\frac {1}{4n-2}}\right)\right)\end{aligned}}} Rearranging and considering the individual sums: = 2 3 n = 1 [ ( 1 4 n 3 1 4 n 2 + 1 4 n 1 1 4 n ) + ( 1 4 n 2 1 4 n ) + ( 1 4 n 3 1 4 n 1 ) ] = 2 3 n = 1 ( 1 4 n 3 1 4 n 2 + 1 4 n 1 1 4 n ) + 1 3 n = 1 ( 1 2 n 1 1 2 n ) + 2 3 n = 1 ( 1 2 ( 2 n 1 ) 1 1 2 ( 2 n ) 1 ) = 2 3 n = 1 ( 1 ) n + 1 n + 1 3 n = 1 ( 1 ) n + 1 n + 2 3 n = 1 ( 1 ) n + 1 2 n 1 = ln ( 2 ) + π 6 . {\displaystyle {\begin{aligned}&={\frac {2}{3}}\sum _{n=1}^{\infty }\left[\left({\frac {1}{4n-3}}-{\frac {1}{4n-2}}+{\frac {1}{4n-1}}-{\frac {1}{4n}}\right)+\left({\frac {1}{4n-2}}-{\frac {1}{4n}}\right)+\left({\frac {1}{4n-3}}-{\frac {1}{4n-1}}\right)\right]\\&={\frac {2}{3}}\sum _{n=1}^{\infty }\left({\frac {1}{4n-3}}-{\frac {1}{4n-2}}+{\frac {1}{4n-1}}-{\frac {1}{4n}}\right)+{\frac {1}{3}}\sum _{n=1}^{\infty }\left({\frac {1}{2n-1}}-{\frac {1}{2n}}\right)+{\frac {2}{3}}\sum _{n=1}^{\infty }\left({\frac {1}{2(2n-1)-1}}-{\frac {1}{2(2n)-1}}\right)\\&={\frac {2}{3}}\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n}}+{\frac {1}{3}}\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n}}+{\frac {2}{3}}\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{2n-1}}\\&=\ln \left(2\right)+{\frac {\pi }{6}}.\end{aligned}}} {\displaystyle {\begin{aligned}&={\frac {2}{3}}\sum _{n=1}^{\infty }\left[\left({\frac {1}{4n-3}}-{\frac {1}{4n-2}}+{\frac {1}{4n-1}}-{\frac {1}{4n}}\right)+\left({\frac {1}{4n-2}}-{\frac {1}{4n}}\right)+\left({\frac {1}{4n-3}}-{\frac {1}{4n-1}}\right)\right]\\&={\frac {2}{3}}\sum _{n=1}^{\infty }\left({\frac {1}{4n-3}}-{\frac {1}{4n-2}}+{\frac {1}{4n-1}}-{\frac {1}{4n}}\right)+{\frac {1}{3}}\sum _{n=1}^{\infty }\left({\frac {1}{2n-1}}-{\frac {1}{2n}}\right)+{\frac {2}{3}}\sum _{n=1}^{\infty }\left({\frac {1}{2(2n-1)-1}}-{\frac {1}{2(2n)-1}}\right)\\&={\frac {2}{3}}\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n}}+{\frac {1}{3}}\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n}}+{\frac {2}{3}}\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{2n-1}}\\&=\ln \left(2\right)+{\frac {\pi }{6}}.\end{aligned}}}

References

[edit ]
  1. ^ "Decagonal Numbers". GeeksforGeeks. 2017年12月25日. Retrieved 2025年08月12日.
  2. ^ "C program to find Decagonal Number". GeeksforGeeks. 2017年03月06日. Retrieved 2025年08月12日.
2-dimensional
centered
non-centered
3-dimensional
centered
non-centered
pyramidal
4-dimensional
non-centered
Higher dimensional
non-centered
Classes of natural numbers
Powers and related numbers
×ばつ_2b_±_1276">Of the form a × 2b ± 1
Other polynomial numbers
Recursively defined numbers
Possessing a specific set of other numbers
Expressible via specific sums
2-dimensional
centered
non-centered
3-dimensional
centered
non-centered
pyramidal
4-dimensional
non-centered
Combinatorial numbers
Divisor functions
Prime omega functions
Euler's totient function
Aliquot sequences
Primorial
Other prime factor or divisor related numbers
Numeral system-dependent numbers
Arithmetic functions
and dynamics
Digit sum
Digit product
Coding-related
Other
P-adic numbers-related
Digit-composition related
Digit-permutation related
Divisor-related
Other
Generated via a sieve
Sorting related
Graphemics related

AltStyle によって変換されたページ (->オリジナル) /