Jump to content
Wikipedia The Free Encyclopedia

Centered nonagonal number

From Wikipedia, the free encyclopedia
Centered figurate number that represents a nonagon with a dot in the center

A centered nonagonal number, (or centered enneagonal number), is a centered figurate number that represents a nonagon with a dot in the center and all other dots surrounding the center dot in successive nonagonal layers. The centered nonagonal number for n layers is given by the formula[1]

N c ( n ) = ( 3 n 2 ) ( 3 n 1 ) 2 . {\displaystyle Nc(n)={\frac {(3n-2)(3n-1)}{2}}.} {\displaystyle Nc(n)={\frac {(3n-2)(3n-1)}{2}}.}

Multiplying the (n − 1)th triangular number by 9 and then adding 1 yields the nth centered nonagonal number, but centered nonagonal numbers have an even simpler relation to triangular numbers: every third triangular number (the 1st, 4th, 7th, etc.) is also a centered nonagonal number.[1]

Thus, the first few centered nonagonal numbers are[1]

1, 10, 28, 55, 91, 136, 190, 253, 325, 406, 496, 595, 703, 820, 946.

The list above includes the perfect numbers 28 and 496. All even perfect numbers are triangular numbers whose index is an odd Mersenne prime.[2] Since every Mersenne prime greater than 3 is congruent to 1 modulo 3, it follows that every even perfect number greater than 6 is a centered nonagonal number.

In 1850, Sir Frederick Pollock conjectured that every natural number is the sum of at most eleven centered nonagonal numbers.[3] Pollock's conjecture was confirmed as true in 2023.[4]

Congruence Relations

[edit ]
  • All centered nonagonal numbers are congruent to 1 mod 3.
    • Therefore the sum of any 3 centered nonagonal numbers and the difference of any two centered nonagonal numbers are divisible by 3.

See also

[edit ]

References

[edit ]
2-dimensional
centered
non-centered
3-dimensional
centered
non-centered
pyramidal
4-dimensional
non-centered
Higher dimensional
non-centered
Classes of natural numbers
Powers and related numbers
×ばつ_2b_±_1276">Of the form a × 2b ± 1
Other polynomial numbers
Recursively defined numbers
Possessing a specific set of other numbers
Expressible via specific sums
2-dimensional
centered
non-centered
3-dimensional
centered
non-centered
pyramidal
4-dimensional
non-centered
Combinatorial numbers
Divisor functions
Prime omega functions
Euler's totient function
Aliquot sequences
Primorial
Other prime factor or divisor related numbers
Numeral system-dependent numbers
Arithmetic functions
and dynamics
Digit sum
Digit product
Coding-related
Other
P-adic numbers-related
Digit-composition related
Digit-permutation related
Divisor-related
Other
Generated via a sieve
Sorting related
Graphemics related

AltStyle によって変換されたページ (->オリジナル) /