[フレーム]
1 - 40 件 / 581件
こんにちは、ほけきよです。 pythonでデータを取り扱っているとき「あれ、これどうやるんだっけ??」 ってなること、ありませんか?僕は10分に1回程度なります。 いや、覚えろと自分でも思うんですが、覚えられないんですよね。100回くらい同じコマンドを調べてたりする。 物覚えが良くないので、ココを見れば絶対大丈夫なようにしておこうと思い、まとめてみました。 jupyterで最初に開くときに読み込むモジュールたち datetime 日付⇔文字列の変換 datetimeの足し算引き算 json dict型⇔json jsonファイルの入出力 datetimeをjsonにする時、エラーが出る pandas 〜以外を表すやつ andとor inf弾く リストをdfにサクッと変換 datetimeとして読み込み 読み込み時にcodecのエラーが出る DataFrameのfor文 numpy lins
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import json import glob import math from pathlib import Path from collections import Counter from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix from sklearn.metrics import roc_auc_score from sklearn.model_selection imp
データ分析ガチ勉強アドベントカレンダー 14日目。 時系列データでまず思いつくのは、株価のチャートですよね。 また、最近はやっている仮想通貨。私も最近coincheckに入金しました。 ビットコイン取引所 "coincheck" やっぱ、実際にお金が絡むとちゃんと勉強しようって言う気になる!笑 せっかくチャートを見るわけだし、その見方について勉強しておこうと思いました。 そしてせっかくなので、自分で実装してどういう仕組みなのかまで知っておこうと思いました。 理系だからね、分からないものを使うのは嫌だからね。 というわけで、Python(主にPandasとMatplotlibを用いながら)でテクニカル指標についてやっていきます。扱うデータは三年分の日経平均株価。 指標について知りたい人も、自分で実装してみたいという人もどうぞ。 テクニカル分析とファンダメンタル分析 実装において ローソク足
機械学習Podcast「TWiML&AI」で先週取り上げられた可視化ライブラリ「Yellowbrick」が非常に便利だったので紹介します!ちなみにPodcastには作者の1人であるRebecca Bilbroさんが出演しているので興味持った方は是非聞いてみてください。 twimlai.com www.scikit-yb.org Yellowbrickとは 一言で言うと、機械学習に特化した可視化ライブラリです。実装的な面で言うと(こちらの方がわかりやすいかもしれません)、scikit-learnとmatplotlibをラップして、scikit-learnライクなAPIで使うことができるものです。 例えば相関行列のヒートマップをプロットしたい場合は次のように書くだけでグラフを作ることができます。 visualizer = Rank2D(features=features, algorithm=
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? はじめに この記事では、私がこれまでXで発信してきたデータサイエンスに関わるさまざまな分野のチートシートを一挙にまとめました。前処理、可視化、機械学習、深層学習、ベイズ・統計、さらにはその他の関連トピックまで、私が作成したものからネット上のものまで多岐にわたる内容を網羅しています。 それぞれのセクションでは、実践的かつ即戦力となる情報が詰まったチートシートを紹介しており、初心者から上級者まで幅広い層に役立つ内容を目指しました。 日頃からX(旧Twitter)を通じて、データサイエンスに関する知識や役立つリソースを共有していますが、今回の
2016年10月に未経験・新人データサイエンティストで雇ってもらいました。当時はまだ業界が牧歌的だったのと、比較的書類上のスペックが高い若者だったのもあり、運良く拾ってもらえたのでした。今だと100%受かってないです。 そんな私が今までで読んだ本の中で、役に立った本をつらつら書いていきます。 現代の若者がどんどん優秀になっているので、これくらいでいまんとこいっぱしのデータサイエンティスト(@ビジネスサイド)になれるんだなあという基準を述べようかと思いました。何年か後に振り返りたいですね。 もちろん、これが誰かの学習の役に立てばと思っています。 ちなみに、アフィリエイト入れてないので気にせず買っていってください。 数学無難に解析学と線形代数学を勉強しておくといいと思っています。
はじめに ソフトウェア開発のチームの生産性や健全性というものは、内部の体感的として理解できるものの、外部の人間からは見えにくいものです。こういった情報の非対称性は開発チーム外の人々との関係の中での問題の原因になってきました。 また、複数の開発チームやプロダクトを束ねるEM、CTOや、管理職にとってそれぞれの状況を客観的な数字やグラフで可視化することは、全体的な戦略を考える上でも重要な参考情報になります。ですが、アンケートやプロジェクト管理を増やすほど、どんどんと開発メンバーに負担をかけてしまうことになり、計測のし過ぎによる疲れなども誘発してしまいます。 本稿では、gitリポジトリのログ情報から、いくつかのグラフを生成し、チームの状況を可視化するためのツールgilotを作成したので、その目的と意図、そして使い方、注意点を解説します。 アプローチ方法 gilotのアプローチは、git logの
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? English version available on dev.to はじめに matplotlibで作ったグラフの細かい調整は大変です。何をどういじったらいいのかを調べるのにアホみたいに時間がかかることもあります1。「何を」の部分の名前さえわからないこともあります。解決の糸口を掴んだ後も希望通りの見た目を実現するまでの最後のアレンジに苦労することが多いです2。これらの問題は matplotlibのグラフがどういう要素で構成されていて、それらに対してどういうことができるかを知る ことでいくらか改善されます。私はひたすらStack Ov
こんにちは、THE GUILDの @goando です。 私はTHE GUILDの中でもデータを扱う仕事を中心に活動しており、「UXの改善をデータでサポートする」をミッションに取り組んでいます。 ざっくり言うと、THE GUILDのクライアント企業が運営するサービスのログを分析してユーザーの行動傾向からUXの改善点を見つけ出したり、マーケットの市場リサーチを通じてサービスの戦略の策定を支援したり、と言った内容です。 こうした活動を通じて、データ分析の結果をグラフ等のレポートに落とし込むという事を数多く行ってきました。 試行錯誤を繰り返しつつ、データをどのようなデザインで視覚化するとメッセージが伝わりやすいのか、逆にどういう点に気をつけないと誤解を与えやすいのか、といったノウハウを少しずつ蓄積してきました。 データ分析を台無しにするダメグラフかく言う私もかつて、そのグラフから何が言いたいのか
今話題のDeep Learning(深層学習)フレームワーク、Chainerに手書き文字の判別を行うサンプルコードがあります。こちらを使って内容を少し解説する記事を書いてみたいと思います。 (本記事のコードの全文をGitHubにアップしました。[PC推奨]) とにかく、インストールがすごく簡単かつ、Pythonが書ければすぐに使うことができておすすめです! Pythonに閉じてコードが書けるのもすごくいいですよね。 こんな感じのニューラルネットワークモデルを試してみる、という記事です。 主要な情報はこちらにあります。 Chainerのメインサイト ChainerのGitHubリポジトリ Chainerのチュートリアルとリファレンス 1. インストール# まずは何はともあれインストールです。ChainerのGitHubに記載の"Requirements" ( https://github.c
%matplotlib inline import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np import seaborn as sns import numpy.random as rd m = 10 s = 3 min_x = m-4*s max_x = m+4*s x = np.linspace(min_x, max_x, 201) y = (1/np.sqrt(2*np.pi*s**2))*np.exp(-0.5*(x-m)**2/s**2) plt.figure(figsize=(8,5)) plt.xlim(min_x, max_x) plt.ylim(0,max(y)*1.1) plt.plot(x,y) plt.show() この図は、平均$\mu$、標準偏差$\sigma$
こんにちは、データ分析部でバイトをしている子田(id:woody_kawagoe)です。 ニュースパスのログを集計して分析するといった業務を行っています。Gunosyで分析に利用しているツールとしては主にJupyter, Pandas, matplotlibがあります。 この組み合わせは非常に相性が良く、研究でも役立つと思います。 そこで今回のブログではデータ分析に役立つtipsや学んだことをまとめます。 Jupyter Pandas matplotlab データ分析の基本的な流れ 参考資料 Jupyter jupyter.org ブラウザ上で利用できる開発環境です。 対話型で、作成したスクリプトと出力結果の対応関係が非常に見やすいです。 スクリプトでprint文をかかなくても最終行に変数おけば表示してくれます。 またgithub上にJupyterで作成できるipynbファイルを置くと他の
データ分析における関数の使い方については様々な記事が上がっています。関数を知らなかったり使い方が分からないときは調べればだいたい答えが見つかります。 一方で、実際に分析を始めようとすると、たとえ関数の使い方がわかっていても、データをどのような切り口から何を分析・可視化していけば良いのか困ってしまうことがよくあります。 この記事では、あんちべさんが書いたデータ解析の実務プロセス入門という本をベースに、どのようなデータから何を見たいときにどのような可視化手法を使えばよいのかを、具体例を交えながら整理していきます。 探索的データ解析とは データ解析のアプローチは、大きく分けて仮説をデータで検証する「仮説検証型」とデータから仮説を生み出す「探索型」に分けられます。 実際にデータ解析を行うときは、仮説検証型と探索型を行き来しつつ知見を見出していきます。 データ解析には検証すべき仮説を設定することが必
2019年1月22日、freee株式会社にて、Data Driven Developer Meetupが主催するイベント「Data Driven Developer Meetup #4」が開催されました。サービスをより良いものにするために日々データと向き合っているデータサイエンティストやエンジニアなど、様々な職種で活躍する人々が集い、知見を共有する本イベント。今回は日本経済新聞社とエムスリー株式会社の2社がメインセッションに登壇し、自社の取り組みについて語りました。プレゼンテーション「Bokehではじめるデータビジュアライゼーション」に登場したのは、YukiyoshiSato氏。デモを交えながら、Pythonのインタラクティブビジュアライゼーションライブラリ「Bokeh」の特徴について解説しました。講演資料はこちら BokehではじめるデータビジュアライゼーションYukiyoshiSato
概要 pysocviz が提供する機能 ggplot2 と同じようにできないところとその対策 aes() にクオートされてない変数を指定できない R のように改行できない ggplot2 で使えた色名が使えない ggplot2 で使えた linetype が使えない 文字化けの回避 ggrepel パッケージの利用 scales::percent などの単位・スケール指定 テーマや色パレットのプリセットを変更したい場合 subtitle/caption が表示されない 複数のグラフを連結できない hjust/vjust が使えない グラフ内の図形やテキストの大きさのバランスがおかしい geom_smooth/stat_smooth で一般化加法モデル (GAM) による平滑化ができない geom_quantile の method 指定ができない geom_smooth/stat_smoo
Pandasのグラフ描画機能 この記事ではPandasのPlot機能について扱います。 Pandasはデータの加工・集計のためのツールとしてその有用性が広く知られていますが、同時に優れた可視化機能を備えているということは、意外にあまり知られていません。 この機能は Pandas.DataFrame.plot() もしくは Pandas Plot と呼ばれるものです。 Pandas Plotを使いこなすことが出来るようになれば、 データの読み込み、保持 データの加工 データの集計 データの可視化 というデータ分析の一連のプロセスを全てPandasで完結させることが出来る、つまり分析の「揺りかごから墓場まで」を実現することが出来ます。 Pandasのプロット以外の機能について この記事ではPandasのデータハンドリングなどに関わる機能は説明しません。 そちらにも興味がある方は下記の記事などを
Simple and efficient tools for predictive data analysis Accessible to everybody, and reusable in various contexts Built on NumPy, SciPy, and matplotlib Open source, commercially usable - BSD license
世の中のことをもっと知るにはどうしたら良いだろうと思うときがある。世の中の多くの事柄はログやデータに落とされる。Googleなどの検索サイトは良い例だろう。さて、そのログやデータをどうすれば良いのか? 多くの場合、視覚化が有効な手段となる。 まずは身の回りの日常的なデータやログを何とかしたい。ただ、日常のデータを視覚化するのに数十行以上のコードは書きたくない。まるで息をするかのごとく自然に視覚化を行いたいのだ。そのためには1〜2行、長くて数行で済ませることが必要だ。そこでPythonとmatplotlibを使う。加えて、IPythonがあればなお良い。IPythonの導入については以前のブログ記事であるIPythonの埋め込みプロットが素晴らしいを参考にして欲しい。 まずは事前にnumpyとmatplotlibをインポートしておく。できればscipyも。 >>> from numpy im
Pythonでのグラフ描画 Pythonチャートを描く場合の定番は「matplotlib」ですが、その見た目のやや野暮ったい感じと、表記法のややこしさが指摘されています。 そこで、この記事ではMatplotlibの機能をより美しく、またより簡単に実現するためのラッパー的存在である、「Seaborn」の使い方を取り上げます。 ◆だいやまーく Overview of Python Visualization Tools http://pbpython.com/visualization-tools-1.html 上記の記事ではMatplotlibとSeabornについて下記のように書かれています。 matplotlibについて Matplotlib is the grandfather of python visualization packages. It is extremely powerful b
ExcelのPythonJupyter Notebook JupyterをMicrosoftExcelに埋め込み、VBAの代わりにPythonを記述します 以前は、ExcelとPython JupyterNotebooksの間の「どちらか/または」の選択でした。PyXLL-Jupyterパッケージの導入により、両方を並べて使用できるようになりました。 この記事では、Excel内で実行されるJupyterNotebookをセットアップする方法を紹介します。2つの間でデータを共有し、ExcelワークブックからJupyterノートブックに記述されたPython関数を呼び出すこともできます。 入門 まず、ExcelでPythonコードを実行するには、PyXLLアドインが必要です。PyXLLアドインを使用すると、PythonをExcelに統合し、VBAの代わりにPythonを使用できます。PyXLL
matplotlibはPythonでグラフを描画するときなどに使われる標準的なライブラリです。 画像ファイルを作るばかりでなく、簡単なアニメーションやインタラクティブなグラフを作ることも可能です。 実際の例はmatplotlibサイトのギャラリーで見ることができます。 matplotlib/gallery matplotlibは本家のサイトやどこかのブログにあるチュートリアルや例を描画してみるぶんには簡単なのですが、 実際に自分でプロットするとなると基礎的な概念を理解していないと使いにくいライブラリでもあります。 また、基礎的な概念を理解していないとドキュメントを参照する際にもどこを見て、どう実用すればいいのかわかりません。 そこで、この記事ではそのあたりのmatplotlibの基礎を解説していきます。 なお、Python自体の知識はある程度仮定していますが、matplotlib自体の実装
pandas は可視化のための API を提供しており、折れ線グラフ、棒グラフといった基本的なプロットを簡易な API で利用することができる。一般的な使い方は公式ドキュメントに記載がある。 Visualization — pandas 0.17.1 documentation これらの機能は matplotlib に対する 薄い wrapper によって提供されている。ここでは pandas 側で一処理を加えることによって、ドキュメントに記載されているプロットより少し凝った出力を得る方法を書きたい。 補足 サンプルデータに対する見せ方として不適切なものがあるが、プロットの例ということでご容赦ください。 パッケージのインポート import matplotlib.pyplot as plt plt.style.use('ggplot') import matplotlib as mpl m
秋山です。 サービスを運営していると、いろいろなデータから必要な情報だけを取得して分析するような機会もたくさんあるかと思います。 分析に使えるツールは世の中にたくさんあるので、どれが使いやすいかは人それぞれですが、今回は「分析を始めたばかりで何をどうすればいいのかわからない...!」という方のために、Pythonを使って初心者向けのデータ分析のやり方を紹介します。 ■しかく使用する環境 paizaでは、Pythonを使ってスキルチェック問題の回答データや、ユーザーの情報等の分析をしています。(R言語を使っていたときもありましたが、私がPythonのライブラリにある便利機能を使いたかったのと、R言語があまり得意ではなかったので移行しました) 今回は、Python3がインストール済みの環境を想定しています。これから出てくるコードもPython3を推奨しています。 下記のライブラリを使用します。 Jupy
import numpy as np import scipy from scipy.stats import binom %matplotlib inline %config InlineBackend.figure_format = 'svg' import matplotlib import matplotlib.pyplot as plt import seaborn as sns print("numpy version :", np.__version__) print("matplotlib version :", matplotlib.__version__) print("sns version :",sns.__version__) numpy version : 1.18.1 matplotlib version : 2.2.2 sns version : 0.8.1
久しぶりの投稿になってしまいましたが、ニュースパス(現在CM放映中!!)開発部の大曽根です。 作業中はGrover Washington Jr のWinelightを聴くと元気が出ます。参加ミュージシャンが素晴らしいですね。 なぜ時系列分析をするのか 季節調整 実演 おまけ: 時間別に見てみる まとめ 今後 なぜ時系列分析をするのか 数値を非常に重視している弊社では、数値を知るためのツールとしてRedashやChartioおよびSlackへの通知を活用しています。現在の数値を理解する上では、長期のトレンド(指標が下がっているのか、上がっているのか)を知ることが重要です。しかし、日々変化するデータ(特に売上やKPIと言われる指標)は、ばらつきも大きく、変化を適切に捉えることが難しいこともあります。 特にSlackなどへの通知を行っていると、日々の変化に囚われがちです。例えば、弊社ではニュース
何の話かというと RStudioではじめるRプログラミング入門 作者: Garrett Grolemund,大橋真也,長尾高弘出版社/メーカー: オライリージャパン発売日: 2015年03月25日メディア: 大型本この商品を含むブログを見る 某編集長から上記の書籍が送られてきて、「これは、次はRの本を書けという指示か????」と勘ぐってみたものの、筆者はPython派なので、「これと同じことは全部Pythonでもできるんだよー」と言いたくなって、このエントリーを書き始めた次第です。ちなみに、この本、Rの入門書としてはよくできているので、これのPython版ができたら、それはそれで役に立つ気もします。 なお、このエントリーでは、あくまでコードの部分だけを書き直して、RとPythonの差異についての説明だけを行ないます。コードそのものの説明については、上記の書籍をご購入ください。 環境準備 IP
1. はじめに 週刊少年ジャンプ(以下,ジャンプ)は,日本で最も売れている漫画雑誌1です.言うまでもなく,私は大ファンです. ジャンプ編集部の連載会議は非常にシビアです.ジャンプ作家の奮闘を描いたフィクション漫画「バクマン。」では,編集部が毎号の読者アンケートをもとに各漫画の人気を評価し,掲載順や打ち切り作品を決定する様子が描かれています2.連載開始から10週以内(単行本約1冊分)で連載が打ち切られてしまうことも珍しくありません.とても厳しい世界です. 本記事では,機械学習を使って,短命作品(10週以内に終了する作品)の予測を行います.究極の目標は,ジャンプ編集部より先に打ち切り作品を予測し,好みの作品が危ない場合はアンケートを出して打ち切りを回避することです3.我々は読者アンケートの結果を知ることができないので,掲載順の履歴を入力とし,短命作品か否かを出力する多層パーセプトロン4をTen
xkcdとは 世界一で最も人気のあるウェブ漫画の一つです xkcd: Code Quality 3 ランダル・マンローが2005年9月に開設 皮肉や風刺が得意。理系ネタが結構多い。 現在は週3回更新されている キャラやフォントが特徴的 これとか皮肉が効いてていいですね!好きです A : 寝ないの? B : 寝られないんだ、大事なことがある A : なによ? B : 誰かがインターネットでボロを出してるんだ xkcd: Duty Calls 実はmatplotlibを使えば、グラフをxkcd風に仕立てられます。しかもたった一行で!今回はその紹介をします xkcdとは matplotlibで、xkcd requirement 使い方 MatplotlibのHPもxkcd風に サンプルを見てみる 3D 円グラフ 最後に matplotlibで、xkcd requirement matplotli
Matplotlib is a python library for making publication quality plots using a syntax familiar to MATLAB users. Matplotlib uses numpy for numerics. Output formats include PDF, Postscript, SVG, and PNG, as well as screen display. As of matplotlib version 1.5, we are no longer making file releases available on SourceForge. Please visit http://matplotlib.org/users/installing.html for help obtaining matp
今年の7月に開催されたSciPy2015の講演動画がEnthoughtのチャンネルで公開されている。今年も面白い講演が多いのでいろいろチェックしている。 今年の目標(2015年1月11日)にPythonの機械学習ライブラリであるscikit-learnを使いこなすというのが入っているので、まずはscikit-learnのチュートリアルを一通り見ることにした。 Part IとPart IIを合わせると6時間以上あり非常に充実している。IPython Notebook形式の資料やデータは下記のGitHubアカウントで提供されている。ノートブックをダウンロードし、実際に手を動かしながらチュートリアルを進めると理解がより進むかもしれない。 あとで振り返りやすいように内容を簡単にまとめておきたい。 1.1 Introduction to Machine Learning 機械学習システムの流れ。教師あ
今年の目標(2011年1月1日)の1つに音声認識技術の深耕というのを立ててます。いきなり音声認識をやるのは知識不足でかなり大変だということが分かったので、まずは音声のいろんな性質や信号処理の技術を一つ一つ試しながら習得していくことにしました。 音声信号処理ではよくMatlabが使われるようなのですが、 Matlabは高くて買えない(フリーのOctaveってのもあります) すでに使っているPython、Rと文法が似ていて混乱する というわけでMatlabはやめてPythonを使います。SciPyにフーリエ変換の機能があったのでたぶん同じようなことができるでしょう。Pythonのいろんな音声関係のライブラリなんかも紹介できればと思います。 当面の目標は、簡単な類似楽曲検索システムを作ることです。その後は、いろんなツール(HTKなど)を駆使して音声認識システムを作りたいと思ってます。 このページは
One document to learn numerics, science, and data with Python¶ Tutorials on the scientific Python ecosystem: a quick introduction to central tools and techniques. The different chapters each correspond to a 1 to 2 hours course with increasing level of expertise, from beginner to expert.
本記事ではデータの性質毎にグラフおよびそれが伝える内容を整理し,Pythonによるそれらの実装を示す. ここでは From Data to Viz に従って整理する. ただし,一部のグラフ2とMapsとNetworkは扱わない. また,各グラフが得意とする表現は5 Quick and Easy Data Visualizations in Python with Codeで用いられている以下の図に従い,比較,分布,構成,関係,の4種類で分類する. 他の分類基準に興味がある方は他に記事があるのでそちらを参照されたい3. 本章の残りの部分ではグラフ作成時の注意点や実装方針を述べ,実行環境を明記する. 第2章ではデータの性質・目的毎にグラフを整理し,第3章でそれらの実装を示す. 最後に,第4章で参考資料を記す. 方針 グラフ作成時の注意点 ある変数についてプロットする際,凡例が複数になる場合は各
訳者まえがき まえがき 1章 はじめに 1.1 この本で説明する内容 1.2 なぜPythonはデータ分析者におすすめなのか 1.2.1 「糊(グルー)」としてのPython 1.2.2 「2つの言語を利用する」ことの問題を解決する 1.2.3 Pythonを使わない場合 1.3 本書で扱う重要なPythonライブラリ 1.3.1 NumPy 1.3.2 pandas 1.3.3 matplotlib 1.3.4 IPython 1.3.5 SciPy 1.4 インストールとセットアップ 1.4.1 Windows 1.4.2 Apple OS X 1.4.3 GNU/Linux 1.4.4 Python 2とPython 3の相違点 1.4.5 統合開発環境(IDE) 1.5 コミュニティとカンファレンス(会議) 1.6 この本の読み方の案内 1.6.1 コード例 1.6.2 例として用
# 原文:http://www.scipy.org/Tentative_NumPy_Tutorial このチュートリアルを読む前に、Pythonについてちょっとは知っているべきだ。記憶をリフレッシュしたいと思うなら、Pythonチュートリアルを見てくるがいい。 このチュートリアルに出てくる例を試したいなら、あなたのPCに少なくとも Python NumPy はインストールされているべきで、他に入ってると便利なのは: ipython は拡張されたインタラクティブなPythonシェルで、NumPyの機能を探検するのにとても便利 matplotlib があると図表の描画が可能になる SciPy はNumPyの上で動く科学計算ルーチンを沢山用意してくれる 基礎 NumPy の主要なオブジェクトは、同じ型(普通は数)の要素のみから成り、正の整数のタプルで添字付けされた、均質なテーブル(というか多次元
This website contains the full text of the Python Data Science Handbook by Jake VanderPlas; the content is available on GitHub in the form of Jupyter notebooks. The text is released under the CC-BY-NC-ND license, and code is released under the MIT license. If you find this content useful, please consider supporting the work by buying the book!
このサイトについて このサイトでは、データ加工や集計、統計分析などインタラクティブに実行されるスクリプトやバッチプログラム、本格的な Web アプリケーションの実装まで、多彩な機能を持ちながらも初心者にも扱いやすいプログラミング言語 Python (パイソン) を使ったデータの統計分析の手順や使い方について紹介します。 初めてプログラムに触れる人や、R や SAS, Ruby のような言語のプログラミング経験はあっても、Python をあまり扱った経験のない初心者向けに理解できるような内容としてまとめています。 また、本格的な統計分析(基本統計量や多変量解析、データマイニング、機械学習)を学んだことがない人でも理解できるよう、統計(アナリティクス)の解説も必要に応じて述べています。 このサイトで提供できる情報を通して、皆さんが Python を使ったビッグデータ解析を思いのままに使いこなせ
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く