[フレーム]
1 - 40 件 / 64件
画像は公式サイトより アマゾン ウェブ サービス ジャパン株式会社(Amazon Web Services、AWS)は、機械学習のスキルを身につけられるとうたうトレーニングや「AWS 認定試験」の情報を掲載する「AWSで機械学習をマスターする」日本語版ページを公開した。 公式サイトより 同ページに掲載しているトレーニングは、機械学習、人工知能(AI)、ディープラーニング(深層学習)をビジネスに応用し、新しい分析情報や価値を手に入れる方法について学習できるというもの。65以上のデジタルコースを利用できる。価格は無料のものが多い。 公式サイトより 「デベロッパー」「データサイエンティスト」「データプラットフォームエンジニア」「ビジネス上の意思決定者」といったジャンルから、好きなトレーニングを選択することも可能。 たとえば、「データサイエンティスト」向けには、「データサイエンスの要素(中級コース
〜AutoMLで実践する〜 ビジネスユーザーのための機械学習入門シリーズ 【第 3 回】 「積ん読」と「体重増」の悩みを AutoML で解決しよう 前回は、AutoML Tables による EC サイトの LTV 分析事例を紹介しました。今回は、同じ AutoML Tables を、より身近な課題の解決に使う方法を紹介します。 その課題とは、筆者自身が抱えていた 2 つの悩みです。ひとつは、スキャンして PDF で保管している書籍の「積ん読」を大量に抱えていたこと。もうひとつは、自宅作業ばかりで増え続けてしまっている体重です。 この 2 つの課題を一挙に解決するソリューションとして筆者が思いついたのが、「PDF 書籍をオーディオブックに変換する」という方法です。読みたかった書籍をオーディオブック化しておけば、ランニングしながら積ん読を解消できます。 この動画のように、Cloud Sto
TL;DR 10年前の落ちこぼれポスドクが今は立派なデータサイエンティストになれたっぽいので、ポエムを書きました。業界事情の振り返りと、仕事の話、知名度が上がることの良し悪し、キャリアの話などを綴っています。 時が経つのは早いもので、落ちこぼれポスドクだった僕が企業転職をし、データサイエンティストになって今日で10年が経ちました。自分の中ではデータサイエンティストに転じたのはついこの前のことのように思える一方で、あまりにも多くの様々な体験をしてきたせいか「もっと時間が経っている気がするのにまだ10年しか経っていないのか」という気もしています。 今でも時々SNSで話題に上る回顧録を書いたのが3年前のことなんですが、それ以降は相変わらず同じく現職に留まり続けていることもあり、有体に言えばそれほど大きく変わったことはありません。なので、新たに3年間の振り返りを書くのではなく、回顧録で書き漏らした
米マイクロソフトは現地時間10月26日、無料アプリ「Lobe」のプレビュー版を公開した。同アプリはMacとWindowsで利用できる。 Lobeに画像をインポートすると、データサイエンスの経験がないユーザーでも、簡単にラベル付けおよび、機械学習のデータセットを作成できる。また、データセットを作成したら、プラットフォーム上でデータセットを活用し、アプリやウェブサイト、デバイスで動作させられる。 公式ブログにおいては、アライグマが住民のゴミを持っていったときや、危険な状況にある従業員がヘルメットをかぶっていないときにアラートを作成するといった例が紹介されており、家庭や職場などの日常生活での活用を見込んでいると考えられる。 さらに、マイクロソフトはLobeによって、クラウドに使用せずに、PCを使って機械学習を簡単かつ、迅速に始められる方法を探しているユーザーには、絶好の機会を提供するとしている。
こんにちは! 以前にDartsという時系列分析に特化したpythonライブラリを紹介しました。 前編はこちら 今回は実際にDartsを動かしていきましょう。 Darts内にもデータセットがありますが、公式でも触れられているのであえて、外部のデータを参照してみましょう。導入編でも触れたアイスクリームの生産量の変化を推測したいと思います。 アイスクリームのデータセットはこちら 上記リンクの上部右側Downloadからcsvをダウンロードしてください。 Dartsのインストールは以下の1コマンドです。Windowsではデフォルトのコマンドプロンプトでうまくインストールが終了しなかったので、WSL環境などを推奨します。 $ pip install darts ARIMAで学習してみる バックテストでモデルの選定を行う RNNで共変量を扱ってみる まとめ ARIMAで学習してみる まずは、導入編で最
2022年08月27日 データ抽出に特化したAirbyteによるEL(T) 環境構築の実践 データ基盤 Airbyte ELT こんにちは。今回は、データ基盤の構築の一部を実際に体験してみたいと思います。 データ基盤を作成するにあたり、まずは、社内に眠る様々なデータを集めてくる必要があります。前回の記事では、その機能を「収集」と紹介していました。 データ基盤とは何か... データ基盤 データ分析基盤 実践 2022年08月18日 Metaflowでモデルの学習をpipeline化するまで MLOps Metaflow Pipeline 皆さんは「MLOps」について取り組んでいらっしゃるでしょうか。私は2018年頃からデータクレンジングや機械学習モデルの構築や運用をしてきましたが、当時の日本で私の耳にはMLOpsという言葉が入ってくることはありませんでした。 ただMLOpsの元となった「Dev...
こんにちは!nakamura(@naka957)です。本記事では、PyCaretで簡単に探索的データ分析を行う方法をご紹介します。 探索的データ分析(Explanatory Data Analysis: EDA)とは、データセットを様々な視点から分析し、データを考察することを目的に行うことです。EDAで得られた知見や仮説を活用し、その後のデータ分析や機械学習モデルの構築を有効に行うことができます。 データを考察するための最も有効な手法は、可視化することです。そのため、データを可視化するスキルはEDAにおいて非常に重要になります。本記事ではEDAを目的とした可視化する方法をご紹介します。 では、早速始めていきます。 PyCaretとは AutoVizとは ライブラリのインストール 実行の前準備 EDAの実行 散布図 棒グラフ 密度分布 Violinプロット ヒートマップ(相関係数) Auto
本連載では、AutoMLを実現するオープンソースソフトウェア(OSS)を解説します。連載第1回目となる今回は、そもそもAutoMLとはどういうもので、どういった機能やメリットがあるのか解説します。そして、第2回から毎回1つずつOSSを紹介していきます。紹介予定のOSSは以下の通りです(※(注記)取り上げるOSSについては今後変更する可能性があります)。 auto-sklearn TPOT AutoGluon(Amazon) H2O(H2O.ai) PyCaret AutoKeras Ludwig(Uber) Neural Network Intelligence(Microsoft) Model Search(Google) 各OSSの紹介に当たって、特徴を示せるようなテーブルデータや画像データを利用しますが、どのOSSも共通で必ずタイタニックの生存予測データを利用してAutoMLを実践していきま
AutoMLに関するチュートリアル資料です。主に,ハイパーパラメータ最適化(HPO)とニューラル構造探索(NAS)に関する説明をしています。
Google、医療関係者向け文書解析サービスをプレビュー公開 機械学習で単語を抽出、文書検索をアシスト 米Googleはこのほど、機械学習を利用して、医療文書から治療や研究に役立つデータを抽出するサービス2種類をプレビューとして公開した。 医療機関で保管している患者のデータは、カルテに文章の形で記入して保存するなど、構造化できていないことがほとんど。特定のキーワードで検索することや、キーワードごとにデータを分類して管理することはできない。必要なときは、医師などの専門知識を持つ人間が、長い時間をかけて大量の文書を読んで特定のデータを探すしかないのが現状だ。 Googleが今回プレビューとして公開したサービスは「Healthcare Natural Language API」と「AutoML Entity Extraction for Healthcare」の2種類。どちらもREST形式のAP
〜AutoMLで実践する〜 ビジネスユーザーのための機械学習入門シリーズ 【第 4 回】AutoML のための ML デザイン 機械学習の根幹をなす、理論やアルゴリズム、さらにはプログラミングによる実装技術などは日進月歩の勢いで進歩しており、AutoML もまたその進歩が結実したものとも言えます。しかしながら、これほどまでに機械学習そのものが進歩しているにもかかわらず、実務の現場ではなかなか機械学習による成果を出せないケースが少なくないようです。 テクノロジー業界には、"Garbage in, garbage out" というあまりにも有名な格言があります。これは、機械学習という文脈からは「ゴミのようなデータ・モデル・実践方法から返ってくるのはゴミだけである」とも解釈できます。実務上の成果につながらない機械学習の中には、まさにそのようなシチュエーションに陥っているものも少なくないのではない
こんにちは、開発エンジニアの amdaba_sk(ペンネーム未定)です。 昨年度まで、ラクスの開発部ではこれまで社内で利用していなかった技術要素を自社の開発に適合するか検証し、ビジネス要求に対して迅速に応えられるようにそなえる 「開(か)発の未(み)来に先(せん)手をうつプロジェクト(通称:かみせんプロジェクト)」というプロジェクトがありました。本年度からは規模を拡大し、「技術推進プロジェクト」と名称を改めて再スタートされました。 本記事では、昨年度かみせんプロジェクトとしての最後のテーマとなった機械学習テーマの延長として 2020 年度上期に行った「AutoML ツールの調査と評価」について取り組み結果を報告します。 (ちなみに機械学習テーマは前年度から継続していたこともあり、上期で終了となってしまいました。残念......) なお過去の報告記事はかみせんカテゴリからどうぞ。技術推進プロジェクト
Googleがオンラインイベント「Google I/O 2021」の中で、AIの開発や運用を容易に行えるようにする機械学習プラットフォームの「Vertex AI」を発表しました。 Vertex Ai | Vertex AI | Google Cloud https://cloud.google.com/vertex-ai Google Cloud launches Vertex AI, unified platform for MLOps | Google Cloud Blog https://cloud.google.com/blog/products/ai-machine-learning/google-cloud-launches-vertex-ai-unified-platform-for-mlops Googleによると、Vertex AIを利用すると競合に比べて80%近
ANDPADでエンジニアをしている森です。先日Google社と機械学習(Machine Learning:以下、ML)についてのプライベートなワークショップを開催しました。その参加報告ということでテックブログを執筆しまして、社外の方にもその様子をお伝えできればと思います。 はじめに 私が所属するデータグループでは、2年ほどかけて社内のデータ基盤の構築を行い、データの蓄積を進めてきました。ある程度整備が進捗してきたところで、次はデータの分析にも力を入れていく方針を採っていて、MLやBusiness Intelligenceの分野がターゲットとなっています。直近のテックブログでは、Kaggleへの参加&メダル獲得の記事もアップするなど、社内外の技術動向にアンテナを高く張って活動をしています。 Kaggleコンペティションの振り返り - ANDPAD Tech Blog H&Mコンペで銀メダルを
プロジェクトの作成 Tabular Data Classification (Binary) を選択し、プロジェクトを作成します。 csvファイルをアップロード jsonlでもアップロードできます。 今回はcsvファイルをドラッグ・アンド・ドロップし、target:Survivedカラムを選択し、プロジェクトに追加します。 Go to trainingsをクリックします。 学習 Start models trainingsをクリックします。 推論 83%の精度で分類できました。modelをクリックし、model hubで推論できます。 Kaggleであれば、上位1.5%以内のレベルです。 モデルをダウンロード モデルをダウンロードすることでオフラインで推論できます。 モデルをダウンロード !curl -s https://packagecloud.io/install/repositori
2022年08月27日 データ抽出に特化したAirbyteによるEL(T) 環境構築の実践 データ基盤 Airbyte ELT こんにちは。今回は、データ基盤の構築の一部を実際に体験してみたいと思います。 データ基盤を作成するにあたり、まずは、社内に眠る様々なデータを集めてくる必要があります。前回の記事では、その機能を「収集」と紹介していました。 データ基盤とは何か... データ基盤 データ分析基盤 実践 2022年08月18日 Metaflowでモデルの学習をpipeline化するまで MLOps Metaflow Pipeline 皆さんは「MLOps」について取り組んでいらっしゃるでしょうか。私は2018年頃からデータクレンジングや機械学習モデルの構築や運用をしてきましたが、当時の日本で私の耳にはMLOpsという言葉が入ってくることはありませんでした。 ただMLOpsの元となった「Dev...
こんにちは!nakamura(@naka957)です。 今回は様々な機械学習アルゴリズムの比較・モデル実装に加えて、行った実験記録の管理を簡単に行う方法をご紹介します。実施事項がたくさんありますが、PyCaretとMLflowの活用で少ないコード行数で簡単に実施できます。 PyCaretは機械学習モデルの実装を簡単に行えるOSSですが、PyCaretからMLflowを呼び出すこともでき、実験記録の管理も同時に行えます。PyCaretとMLflowについては、DATA Campusにも紹介記事があります。是非、参考にしてみてください。 【PyCaret】 ■しかく AutoMLライブラリPyCaretを使ってみた〜モデル実装から予測まで〜 ■しかく【続き】 AutoMLライブラリPyCaretを使ってみた 〜結果の描画〜 【MLflow】 ■しかく MLflowの使い方 - 機械学習初心者にもできる実験記録の
Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model architecture for their classification problems (i.e., DNNs with different types of layers). The library enables you to: Run many AutoML algorithms out of the box on your data - including automatically s
目次 はじめに 自己紹介 内容概要 基本設計 TCVのビジネスモデル 施策内容 システム構成 フェーズ1: とりあえずAutoMLを使ってみる フェーズ2: 目的変数を変える フェーズ3: BigQuery MLの導入による検証高速化 フェーズ4: 国別 フェーズ5: 回帰ではなく分類へ フェーズ6とその先へ おわりに はじめに 自己紹介 じげん開発Unitデータ分析基盤チームの伊崎です。 開発Unitは特定の事業部に所属しない全社横断組織です。 その中で、データ分析基盤チームは全社のデータ基盤の整備、データ利活用を担当しています。 私個人としては、大学で純粋数学を学んだ後、前職でエントリーレベルの機械学習エンジニアとして働きました。現職では半分データエンジニア、半分データサイエンティストとして働いています。 プライベートでKaggleに参加し、銅メダルを獲得した経験があります(最近は活動
Uberが開発、ノーコードでディープラーニングを実現するAutoML OSS「Ludwig」:AutoML OSS入門(8)(1/3 ページ) AutoML OSSを紹介する本連載第8回は「Ludwig」を紹介します。Ludwigは「データ型ベース(Datatype-based)」という思想を取り込むことでさまざまな課題に対する柔軟かつ容易な最適化を可能にしたAutoML OSSです。
こんにちは!nakamura(@naka957)です。本記事では、TensorFlowの拡張機能であるTensorFlow Data Validationを用いたデータセット検証を行う方法をご紹介します。 データセット検証とは、機械学習モデルの構築時に使う訓練データと運用データの間の違いを調べることです。訓練データと運用データの性質に違いが存在すると、モデル精度の悪化に繋がります。そのため、構築したモデルの精度監視だけでなく、より前工程となるデータセット時点での検証も非常に重要になります。特に、データセットサイズが大きくなるほど、手作業での検証が困難となるため、効率的で自動化された検証方法が求められてきます。 データセット検証を行うライブラリは様々ありますが、今回は機械学習の実装フレームワークとして特に有名なTensorFlow系のライブラリを用いて行います。 では、早速始めていきます。
AIの産業利用が叫ばれる一方で、AIモデルを構築できるデータサイエンティストやエンジニアの数は不足している。そんな中、AIを知らずとも、プログラムが学習データに適したAIアルゴリズムを自動で選び、良い精度で分析を行える「AutoML」(自動機械学習)を実装したAI自動生成ツールがこの2年ほどで増えてきた。日立ハイテクソリューションズの「AIモデラー」はその一つで、作業者はデータさえ入力すれば、後は数クリックの作業だけで高精度な分析結果を出力してくれる。 しかし、「数クリックで」といわれても本当にそれでできるのか、それで作ったAIを実業務に使えるのかは、説明を聞いているだけでは理解しにくい部分もある。 そこで今回は、AIモデラーを業務で利用している日立製作所の原山元希さん(社会イノベーション事業推進本部 スマートインダストリー開発部)と周祐梨さん(同)に実際の使用感や使い方のコツを聞いた。
AutoMLを最短3行で! 表形式や画像、テキストのデータにも対応可能なOSS「AutoGluon」:AutoML OSS入門(4)(1/3 ページ) AutoML OSSを紹介する本連載第4回は、たった3行のコードでAutoMLが実行できるOSS「AutoGluon」を解説します。AutoGluonは表形式や画像、テキストのデータにも対応しており、データの前処理からモデル選択まで自動で実施してくれるAutoMLのツールキットです。
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article?
Microsoftが開発、Web UIで学習状況を可視化するAutoML OSS「Neural Network Intelligence」:AutoML OSS入門(9)(1/3 ページ) AutoML OSSを紹介する本連載第9回は「Neural Network Intelligence」を解説します。Neural Network Intelligenceは、ハイパーパラメーターチューニングやニューラルアーキテクチャ探索、モデル圧縮、自動特徴量エンジニアリングなどの機能を持つツールキットです。Web UIで学習の進行状況や結果を確認できます。
ディープラーニングモデルを自動構築するAutoML OSS「AutoKeras」:AutoML OSS入門(7)(1/3 ページ) AutoML OSSを紹介する本連載第7回は、KerasベースのAutoML OSSである「AutoKeras」を解説します。AutoKerasは、ENAS(Efficient Neural Architecture Search)によりニューラルネットワークの構造設計とハイパーパラメーターチューニングを自動で行うツールです。
こんにちは。本稿では機械学習を利用したコンポーネントの処理速度の計測方法、および負荷テストのやり方について解説してゆきます。 機械学習を利用するコンポーネントの処理速度を計測する必要性 機械学習アルゴリズムを適用する関数の処理速度を検証 実行時間を測定 関数の実行時間を算出するデコレーター 性能評価テストと継続的な性能チェック 機械学習 API の性能を評価する Locust:インストールと負荷テスト設定追加 Locsutを使った測定測定 もうすこし高度な使い方 分散実行 コマンドラインから実行 まとめ 機械学習を利用するコンポーネントの処理速度を計測する必要性 機械学習を利用したタスクでは、モデルの精度に注意が行きがちです。しかし、一般的なWebアプリケーションでは入力はリソースID(ユーザIDなど)やシンプルなJSONである場合が多いのに対し、機械学習は入データ(自然言語や画像など)や
2022年08月27日 データ抽出に特化したAirbyteによるEL(T) 環境構築の実践 データ基盤 Airbyte ELT こんにちは。今回は、データ基盤の構築の一部を実際に体験してみたいと思います。 データ基盤を作成するにあたり、まずは、社内に眠る様々なデータを集めてくる必要があります。前回の記事では、その機能を「収集」と紹介していました。 データ基盤とは何か... データ基盤 データ分析基盤 実践 2022年08月18日 Metaflowでモデルの学習をpipeline化するまで MLOps Metaflow Pipeline 皆さんは「MLOps」について取り組んでいらっしゃるでしょうか。私は2018年頃からデータクレンジングや機械学習モデルの構築や運用をしてきましたが、当時の日本で私の耳にはMLOpsという言葉が入ってくることはありませんでした。 ただMLOpsの元となった「Dev...
Create powerful AI models without code A new way to automatically train, evaluate and deploy state-of-the-art Machine Learning models.
遺伝的プログラミングを採用、ニューラルネットワークモデルも利用できるAutoML OSS「TPOT」:AutoML OSS入門(3)(1/3 ページ) AutoML OSSを紹介する本連載第3回はTPOTを解説します。TPOTは「遺伝的プログラミング(Genetic Programming)」と呼ばれる手法を適用し、効率的なパイプラインの最適化を目指しています。
ノーコードでAutoMLを実現、Javaアプリと簡単に連携できる「H2O」:AutoML OSS入門(5)(1/3 ページ) AutoML OSSを紹介する本連載第5回は、ノーコードでAutoMLが実行できるOSS「H2O」を解説します。H2Oは、最小限の時間で最適なモデルの構築を目指すだけでなく、分散処理フレームワークを活用した大規模なデータセットの高速処理や、Python以外の手法による機械学習の実現など、さまざまなニーズを満たす機能が実装されています。
はじめに 初めまして。おとです。 ecbeingに入社して1年ちょっと、日々データサイエンスや機械学習について学びつつ業務に勤しんでおります。 機械学習について学び始めてから半年ほど経ちます。その中で、 ・Microsoftが提供するAzure Machine Learning ・AWSが提供するAmazon SageMaker 2つの機械学習サービスのチュートリアルを何度か行いました。 その中でも自動機械学習機能が機械学習初心者である私にとってとても便利だと感じたのでご紹介したいと思います。 はじめに 自動機械学習 Azure Machine Learning の自動機械学習 データの選択 ジョブの構成 タスクと設定の選択 検証とテスト 実験 モデルデプロイ エンドポイント Amazon SageMaker の自動機械学習 実験 モデル エンドポイント おわりに 自動機械学習 通常、機械
機械学習のプロセスを自動化する「AutoML」が、昨今徐々に話題になってきています。 本記事ではこのAutoMLについて、まだ知識のない人でも簡単に理解できるように、なるべくわかりやすく解説していきます。 まずはどのようなものなのかといった基本的な内容説明を行った上で、具体的にどのような活用メリットがあるのかを理解し、さらには代表的なAutoMLツールをご紹介していきます。 AutoMLとは AutoML(Automated Machine Learning)とは直訳すると「自動化された機械学習」ですが、機械学習モデルの設計や構築を自動化すること、またはそのための手法全般を指します。 例えば、1行のプログラミングコードだけで機械学習の機能を呼び出せるようなイメージです。実際、AutoMLの機能付きのフレームワークが存在します。このフレームワークは、機械学習の機能を簡単に呼び出せるようにあら
4行でモデル構築と予測ができるAutoML OSSの老舗「auto-sklearn」:AutoML OSS入門(2)(1/3 ページ) AutoML OSSを紹介する本連載第2回は、AutoML OSSの老舗ともいえる「auto-sklearn」を解説します。auto-sklearnは、scikit-learnを拡張した形で、効率的なベイズ最適化手法を用いたAutoML機能を提供するツールです。
2022年08月27日 データ抽出に特化したAirbyteによるEL(T) 環境構築の実践 データ基盤 Airbyte ELT こんにちは。今回は、データ基盤の構築の一部を実際に体験してみたいと思います。 データ基盤を作成するにあたり、まずは、社内に眠る様々なデータを集めてくる必要があります。前回の記事では、その機能を「収集」と紹介していました。 データ基盤とは何か... データ基盤 データ分析基盤 実践 2022年08月18日 Metaflowでモデルの学習をpipeline化するまで MLOps Metaflow Pipeline 皆さんは「MLOps」について取り組んでいらっしゃるでしょうか。私は2018年頃からデータクレンジングや機械学習モデルの構築や運用をしてきましたが、当時の日本で私の耳にはMLOpsという言葉が入ってくることはありませんでした。 ただMLOpsの元となった「Dev...
ヤフー株式会社:Tech Acceleration Program で KPI に即したアーキテクチャを短期間で開発し AI を駆使した広告審査を実現 デジタル メディアの 1 つとして知られるポータルサイト「Yahoo! JAPAN」を筆頭にさまざまなメディア、サービスで広告事業を展開するヤフー株式会社(以下、ヤフー)。日々、膨大な量の広告を取り扱う同社ですが、それだけに不正な広告を審査する労力もとてつもないものになっていました。その悩みを解決すべく Google Cloud 上に構築された新しい広告審査システムについて担当エンジニア 2 名に話を伺いました。 利用している Google Cloud ソリューション: サーバーレス コンピューティング、ストリーミング分析、AI の構築と使用 利用している Google Cloud サービス: Cloud Run、Cloud Functio
G-gen の佐々木です。当記事では Google Cloud(旧称 GCP)の機械学習サービスである Vertex AI の AutoML で作成した機械学習モデルを、サーバーレスなコンテナ実行基盤である Cloud Run にデプロイしていきます。 Vertex AI および Cloud Run とは? Vertex AI で作成したモデルのデプロイについて 当記事で Cloud Run にデプロイするモデル Vertex AI Model Registry からモデルをエクスポートする ローカルの Docker コンテナで予測を実行する Artifact Registry にモデルをアップロードする Cloud Run にモデルをデプロイする Cloud Run サービスに予測リクエストを送信する Vertex AI & Cloud Run Vertex AI および Cloud R
はじめに 近年、ニューラルネットワークを用いた機械学習の実用化が様々な分野で進んでいます。機械学習モデルの推論精度を向上させるためには、通常多くの試行錯誤が必要となりますが、モデルのデプロイ先の多様化に伴い、単純な精度向上だけでなく利用環境の制約(推論速度、メモリ使用量、バッテリー消費量、等々)も考慮したチューニングが必要となっています。 そのようなニューラルネットワークを実デバイス上での速度や精度の要求に合わせてチューニングする作業は、多くの人的資源と計算資源を要します。PFNでは、この作業を自動化しつつ人手よりもさらに良いモデルを作成する手法の一つとして、ニューラルアーキテクチャ探索(Neural Architecture Search、以降は"NAS"と表記)を効率的に行うためのエコシステムの整備を進めています。 本記事では、開発を行っているNASエコシステムの概要と、その適用事例の
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く