エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
ここにツイート内容が記載されます https://b.hatena.ne.jp/URLはspanで囲んでください
Twitterで共有ONにすると、次回以降このダイアログを飛ばしてTwitterに遷移します
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
テラーノベルで機械学習を中心に担当している川尻です。 テラーノベルでは、定期バッチ処理は主にBigQue... テラーノベルで機械学習を中心に担当している川尻です。 テラーノベルでは、定期バッチ処理は主にBigQueryかDataflowを組み合わせて実行しています。データはBigQueryのテーブルにほとんど保存されているため、基本的にはBigQueryで完結させたいです。しかし、自作した機械学習モデルは前処理も含めてpythonで書く必要があるため、そこだけDataflowを使っていました。最近、BigQueryリモート関数を使ってみたところ、意外と簡単にBigQueryだけでシンプルに完結させることができました。今回は、機械学習モデルをBigQueryから実行したときのちょっとしたハマりどころや、実際にどれくらいコストや処理時間がかかったのか紹介します。 BigQueryリモート関数とは BigQueryリモート関数は、好きな言語やフレームワークでCloud FunctionsやCloud R