新型コロナウイルスに関する情報は、厚生労働省の情報発信サイトを参考にしてください。情報を見る
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
ここにツイート内容が記載されます https://b.hatena.ne.jp/URLはspanで囲んでください
Twitterで共有ONにすると、次回以降このダイアログを飛ばしてTwitterに遷移します
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
はじめに 先日参加したKaggleのOpenVaccine: COVID-19 mRNA Vaccine Degradation Predictionコンペティ... はじめに 先日参加したKaggleのOpenVaccine: COVID-19 mRNA Vaccine Degradation Predictionコンペティションで自分が参加していたチームではDomain Adversarial Neural Networks (DANN)と呼ばれる手法を用いていました。 結果としては、CV, Public LB, Private LBのいずれにも効いていないことが判明したのですが、Kaggleで度々話題になるAdversarial Validationとも類似した面白い技術なので、改めて紹介するとともに本当に使える手法なのかを検証していきたいと思います。 本記事は二部構成(三部構成、2020年10月25日更新)になっており、前編(この記事)ではDANNの紹介と、論文中でも紹介されているMNIST/MNISTMを用いて検証を行います。後編つづく中・後編で