SandBoxFrobeniusAlgebra
last edited 14 years ago by Bill Page

Edit detail for SandBoxFrobeniusAlgebra revision 8 of 26

Editor: Bill Page
Time: 2011年02月12日 22:23:47 GMT-8
Note: commutator and associator

added:
The algebra 'Y' is commutative if the following tensor
(the commutator) is zero
\begin{axiom}
K:=Y-reindex(Y,[1,3,2])
\end{axiom}
A basis for the ideal defined by the coefficients of the
commutator is given by:
\begin{axiom}
C:=groebner(ravel(K))
\end{axiom}
An algebra is associative if::
 Y I = I Y
 Y Y
 Note: right figure is mirror image of left!
 1 2 5 1 4 5
 \/ / \ \/ 
 \/ = \/ 
 \ / 
 6 3 
In other words an algebra is associative if and only
if the following (3,1)-tensor
$A=\{ {a_s}^{kji} = {y_s}^{kr} {y_r}^{ji} - {y_s}^{ri} {y_r}^{kj} \}$
is zero.
\begin{axiom}
A := Y*Y - reindex(Y,[1,3,2])*reindex(Y,[1,3,2]); ravel(A)
\end{axiom}

An n-dimensional algebra is represented by a (1,2)-tensor Y=\{ {y_k}^{ji} \} \ i,j,k =1,2, ... n viewed as an operator with two inputs i,j and one output k. For example in 2 dimensions

axiom
)library DEXPR
DistributedExpression is now explicitly exposed in frame initial DistributedExpression will be automatically loaded when needed from /var/zope2/var/LatexWiki/DEXPR.NRLIB/DEXPR n:=2
Type: PositiveInteger?
axiom
T:=CartesianTensor(1,n,DEXPR INT)
Type: Domain
axiom
Y:=unravel(concat concat
 [[[script(y,[[k],[j,i]])
 for i in 1..n]
 for j in 1..n]
 for k in 1..n]
 )$T
Type: CartesianTensor?(1,2,DistributedExpression?(Integer))

Given two vectors U=\{ u_i \} and V=\{ v_j \}

axiom
U:=unravel([script(u,[[i]]) for i in 1..n])$T
Type: CartesianTensor?(1,2,DistributedExpression?(Integer))
axiom
V:=unravel([script(v,[[i]]) for i in 1..n])$T
Type: CartesianTensor?(1,2,DistributedExpression?(Integer))

the tensor Y operates on their tensor product to yield a vector W=\{ w_k = {y_k}^{ji} u_i v_j \}

axiom
W:=contract(contract(Y,3,product(U,V),1),2,3)
Type: CartesianTensor?(1,2,DistributedExpression?(Integer))

or in a more convenient notation:

axiom
W:=(Y*U)*V
Type: CartesianTensor?(1,2,DistributedExpression?(Integer))

The algebra Y is commutative if the following tensor (the commutator) is zero

axiom
K:=Y-reindex(Y,[1,3,2])
Type: CartesianTensor?(1,2,DistributedExpression?(Integer))

A basis for the ideal defined by the coefficients of the commutator is given by:

axiom
C:=groebner(ravel(K))
Type: List(Polynomial(Integer))

An algebra is associative if:

 Y I = I Y
 Y Y
 Note: right figure is mirror image of left!
 1 2 5 1 4 5
 \/ / \ \/ 
 \/ = \/ 
 \ / 
 6 3 

In other words an algebra is associative if and only if the following (3,1)-tensor A=\{ {a_s}^{kji} = {y_s}^{kr} {y_r}^{ji} - {y_s}^{ri} {y_r}^{kj} \} is zero.

axiom
A := Y*Y - reindex(Y,[1,3,2])*reindex(Y,[1,3,2]); ravel(A)
\label{eq10}\begin{array}{@{}l} \displaystyle \left[{{{y_{1}^{1, \: 2}}\ {y_{2}^{1, \: 1}}}-{{y_{1}^{2, \: 1}}\ {y_{2}^{1, \: 1}}}}, \: \right. \ \ \displaystyle \left.{{{y_{1}^{1, \: 1}}\ {y_{1}^{1, \: 2}}}-{{y_{1}^{1, \: 1}}\ {y_{1}^{2, \: 1}}}+{{y_{1}^{1, \: 2}}\ {y_{2}^{1, \: 2}}}-{{y_{1}^{2, \: 1}}\ {y_{2}^{2, \: 1}}}}, \: \right. \ \ \displaystyle \left.{-{{y_{1}^{1, \: 1}}\ {y_{1}^{1, \: 2}}}+{{y_{1}^{1, \: 1}}\ {y_{1}^{2, \: 1}}}+{{y_{1}^{1, \: 2}}\ {y_{2}^{2, \: 1}}}-{{y_{1}^{2, \: 1}}\ {y_{2}^{1, \: 2}}}}, \right. \ \ \displaystyle \left.\:{{{y_{1}^{1, \: 2}}\ {y_{2}^{2, \: 2}}}-{{y_{1}^{2, \: 1}}\ {y_{2}^{2, \: 2}}}}, \:{-{{y_{1}^{1, \: 1}}\ {y_{1}^{1, \: 2}}}+{{y_{1}^{1, \: 1}}\ {y_{1}^{2, \: 1}}}}, \right. \ \ \displaystyle \left.\:{{{y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 2}}}-{{y_{1}^{2, \: 2}}\ {y_{2}^{2, \: 1}}}}, \: \right. \ \ \displaystyle \left.{-{{y_{1}^{1, \: 2}}^2}+{{y_{1}^{2, \: 1}}^2}-{{y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 2}}}+{{y_{1}^{2, \: 2}}\ {y_{2}^{2, \: 1}}}}, \: \right. \ \ \displaystyle \left.{-{{y_{1}^{1, \: 2}}\ {y_{1}^{2, \: 2}}}+{{y_{1}^{2, \: 1}}\ {y_{1}^{2, \: 2}}}}, \:{{{y_{2}^{1, \: 1}}\ {y_{2}^{1, \: 2}}}-{{y_{2}^{1, \: 1}}\ {y_{2}^{2, \: 1}}}}, \right. \ \ \displaystyle \left.\:{{{y_{1}^{1, \: 2}}\ {y_{2}^{1, \: 1}}}-{{y_{1}^{2, \: 1}}\ {y_{2}^{1, \: 1}}}+{{y_{2}^{1, \: 2}}^2}-{{y_{2}^{2, \: 1}}^2}}, \: \right. \ \ \displaystyle \left.{-{{y_{1}^{1, \: 2}}\ {y_{2}^{1, \: 1}}}+{{y_{1}^{2, \: 1}}\ {y_{2}^{1, \: 1}}}}, \:{{{y_{2}^{1, \: 2}}\ {y_{2}^{2, \: 2}}}-{{y_{2}^{2, \: 1}}\ {y_{2}^{2, \: 2}}}}, \right. \ \ \displaystyle \left.\:{-{{y_{1}^{1, \: 1}}\ {y_{2}^{1, \: 2}}}+{{y_{1}^{1, \: 1}}\ {y_{2}^{2, \: 1}}}}, \: \right. \ \ \displaystyle \left.{{{y_{1}^{1, \: 2}}\ {y_{2}^{2, \: 1}}}-{{y_{1}^{2, \: 1}}\ {y_{2}^{1, \: 2}}}+{{y_{2}^{1, \: 2}}\ {y_{2}^{2, \: 2}}}-{{y_{2}^{2, \: 1}}\ {y_{2}^{2, \: 2}}}}, \: \right. \ \ \displaystyle \left.{-{{y_{1}^{1, \: 2}}\ {y_{2}^{1, \: 2}}}+{{y_{1}^{2, \: 1}}\ {y_{2}^{2, \: 1}}}-{{y_{2}^{1, \: 2}}\ {y_{2}^{2, \: 2}}}+{{y_{2}^{2, \: 1}}\ {y_{2}^{2, \: 2}}}}, \right. \ \ \displaystyle \left.\:{-{{y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 2}}}+{{y_{1}^{2, \: 2}}\ {y_{2}^{2, \: 1}}}}\right] (10)
Type: List(DistributedExpression?(Integer))

AltStyle によって変換されたページ (->オリジナル) /