References
See also:
An n-dimensional algebra is represented by a (2,1)-tensor
Y=\{ {y^k}_{ij} \ i,j,k =1,2, ... n \}
viewed as a linear operator with two inputs i,j and one
output k. For example in 2 dimensions
axiom
n:=2
axiom
T:=CartesianTensor(1,n,FRAC POLY INT)
\label{eq2}\hbox{\axiomType{CartesianTensor}\ } (1, 2, \hbox{\axiomType{Fraction}\ } (\hbox{\axiomType{Polynomial}\ } (\hbox{\axiomType{Integer}\ })))
(2)
Type: Domain
axiom
Y:T := unravel(concat concat
[[[script(y,[[i,j],[k]])
for i in 1..n]
for j in 1..n]
for k in 1..n]
)
\label{eq3}\begin{array}{@{}l} \displaystyle \left[{\left[ \begin{array}{cc} {y_{1, \: 1}^{1}}&{y_{2, \: 1}^{1}} \ {y_{1, \: 2}^{1}}&{y_{2, \: 2}^{1}}
(3)
Type: CartesianTensor
?(1,
2,
Fraction(Polynomial(Integer)))
Given two vectors P=\{ p^i \} and Q=\{ q^j \}
axiom
P:T := unravel([script(p,[[],[i]]) for i in 1..n])
\label{eq4}\left[{p^{1}}, \:{p^{2}}\right]
(4)
Type: CartesianTensor
?(1,
2,
Fraction(Polynomial(Integer)))
axiom
Q:T := unravel([script(q,[[],[i]]) for i in 1..n])
\label{eq5}\left[{q^{1}}, \:{q^{2}}\right]
(5)
Type: CartesianTensor
?(1,
2,
Fraction(Polynomial(Integer)))
the tensor Y operates on their tensor product to
yield a vector R=\{ r_k = {y^k}_{ij} p^i q^j \}
axiom
R:=contract(contract(Y,3,product(P,Q),1),2,3)
\label{eq6}\begin{array}{@{}l} \displaystyle \left[{{{p^{2}}\ {q^{2}}\ {y_{2, \: 2}^{1}}}+{{p^{2}}\ {q^{1}}\ {y_{2, \: 1}^{1}}}+{{p^{1}}\ {q^{2}}\ {y_{1, \: 2}^{1}}}+{{p^{1}}\ {q^{1}}\ {y_{1, \: 1}^{1}}}}, \: \right. \ \ \displaystyle \left.{{{p^{2}}\ {q^{2}}\ {y_{2, \: 2}^{2}}}+{{p^{2}}\ {q^{1}}\ {y_{2, \: 1}^{2}}}+{{p^{1}}\ {q^{2}}\ {y_{1, \: 2}^{2}}}+{{p^{1}}\ {q^{1}}\ {y_{1, \: 1}^{2}}}}\right]
(6)
Type: CartesianTensor
?(1,
2,
Fraction(Polynomial(Integer)))
Pictorially:
P Q
Y
R
or more explicitly
Pi Qj
\/
\
Rk
In Axiom we may use the more convenient tensor inner
product denoted by * that combines tensor product with
a contraction on the last index of the first tensor and
the first index of the second tensor.
axiom
R:=(Y*P)*Q
\label{eq7}\begin{array}{@{}l} \displaystyle \left[{{{p^{2}}\ {q^{2}}\ {y_{2, \: 2}^{1}}}+{{p^{2}}\ {q^{1}}\ {y_{2, \: 1}^{1}}}+{{p^{1}}\ {q^{2}}\ {y_{1, \: 2}^{1}}}+{{p^{1}}\ {q^{1}}\ {y_{1, \: 1}^{1}}}}, \: \right. \ \ \displaystyle \left.{{{p^{2}}\ {q^{2}}\ {y_{2, \: 2}^{2}}}+{{p^{2}}\ {q^{1}}\ {y_{2, \: 1}^{2}}}+{{p^{1}}\ {q^{2}}\ {y_{1, \: 2}^{2}}}+{{p^{1}}\ {q^{1}}\ {y_{1, \: 1}^{2}}}}\right]
(7)
Type: CartesianTensor
?(1,
2,
Fraction(Polynomial(Integer)))
An algebra is said to be associative if:
Y = Y
Y Y
Note: the right hand side of the equation above is
implicitly the mirror image of the left hand side:
i j k i j k i j k
\ | / \/ / \ \/
\ | / \ / \ /
\|/ = e k - i e
| \/ \/
| \ /
l l l
This requires that the following (3,1)-tensor
\label{eq8} \Psi = \{ {\psi_l}^{ijk} = {y^e}_{ij} {y^l}_{ek} - {y^l}_{ie} {y^e}_{jk} \}
(8)
(associator) is zero.
axiom
YY := reindex(reindex(Y,[1,3,2])*reindex(Y,[1,3,2]),[1,4,3,2])-Y*Y; ravel(YY)
\label{eq9}\begin{array}{@{}l} \displaystyle \left[{-{{y_{1, \: 1}^{2}}\ {y_{2, \: 1}^{1}}}+{{y_{1, \: 1}^{2}}\ {y_{1, \: 2}^{1}}}}, \:{{{y_{1, \: 1}^{2}}\ {y_{2, \: 2}^{1}}}-{{y_{2, \: 1}^{1}}\ {y_{2, \: 1}^{2}}}}, \right. \ \ \displaystyle \left.\:{{{y_{1, \: 2}^{1}}\ {y_{2, \: 1}^{2}}}+{{\left(-{y_{1, \: 2}^{2}}+{y_{1, \: 1}^{1}}\right)}\ {y_{2, \: 1}^{1}}}-{{y_{1, \: 1}^{1}}\ {y_{1, \: 2}^{1}}}}, \: \right. \ \ \displaystyle \left.{-{{y_{2, \: 1}^{1}}\ {y_{2, \: 2}^{2}}}+{{\left({y_{2, \: 1}^{2}}-{y_{1, \: 1}^{1}}\right)}\ {y_{2, \: 2}^{1}}}+{{y_{2, \: 1}^{1}}^2}}, \: \right. \ \ \displaystyle \left.{-{{y_{1, \: 1}^{2}}\ {y_{2, \: 2}^{1}}}+{{y_{1, \: 2}^{1}}\ {y_{1, \: 2}^{2}}}}, \:{{\left(-{y_{2, \: 1}^{2}}+{y_{1, \: 2}^{2}}\right)}\ {y_{2, \: 2}^{1}}}, \: \right. \ \ \displaystyle \left.{{{y_{1, \: 2}^{1}}\ {y_{2, \: 2}^{2}}}+{{\left(-{y_{1, \: 2}^{2}}+{y_{1, \: 1}^{1}}\right)}\ {y_{2, \: 2}^{1}}}-{{y_{1, \: 2}^{1}}^2}}, \: \right. \ \ \displaystyle \left.{{\left({y_{2, \: 1}^{1}}-{y_{1, \: 2}^{1}}\right)}\ {y_{2, \: 2}^{1}}}, \:{-{{y_{1, \: 1}^{2}}\ {y_{2, \: 1}^{2}}}+{{y_{1, \: 1}^{2}}\ {y_{1, \: 2}^{2}}}}, \: \right. \ \ \displaystyle \left.{{{y_{1, \: 1}^{2}}\ {y_{2, \: 2}^{2}}}-{{y_{2, \: 1}^{2}}^2}+{{y_{1, \: 1}^{1}}\ {y_{2, \: 1}^{2}}}-{{y_{1, \: 1}^{2}}\ {y_{2, \: 1}^{1}}}}, \: \right. \ \ \displaystyle \left.{{{y_{1, \: 1}^{2}}\ {y_{2, \: 1}^{1}}}-{{y_{1, \: 1}^{2}}\ {y_{1, \: 2}^{1}}}}, \:{-{{y_{1, \: 1}^{2}}\ {y_{2, \: 2}^{1}}}+{{y_{2, \: 1}^{1}}\ {y_{2, \: 1}^{2}}}}, \right. \ \ \displaystyle \left.\:{-{{y_{1, \: 1}^{2}}\ {y_{2, \: 2}^{2}}}+{{y_{1, \: 2}^{2}}^2}-{{y_{1, \: 1}^{1}}\ {y_{1, \: 2}^{2}}}+{{y_{1, \: 1}^{2}}\ {y_{1, \: 2}^{1}}}}, \: \right. \ \ \displaystyle \left.{{{\left(-{y_{2, \: 1}^{2}}+{y_{1, \: 2}^{2}}\right)}\ {y_{2, \: 2}^{2}}}+{{y_{1, \: 2}^{1}}\ {y_{2, \: 1}^{2}}}-{{y_{1, \: 2}^{2}}\ {y_{2, \: 1}^{1}}}}, \: \right. \ \ \displaystyle \left.{{{y_{1, \: 1}^{2}}\ {y_{2, \: 2}^{1}}}-{{y_{1, \: 2}^{1}}\ {y_{1, \: 2}^{2}}}}, \:{{\left({y_{2, \: 1}^{2}}-{y_{1, \: 2}^{2}}\right)}\ {y_{2, \: 2}^{1}}}\right]
(9)
Type: List(Fraction(Polynomial(Integer)))
The algebra Y is commutative if:
Y = Y
i j i j j i
\ / = \/ - \/
| \ /
k k k
This requires that the following (2,1)-tensor
\label{eq10} \mathcal{C} = \{ {c^k}_{ij} = {y^k}_{ij} - {y^k}_{ji} \}
(10)
(commutator) is zero.
axiom
YC:=Y-reindex(Y,[1,3,2])
\label{eq11}\begin{array}{@{}l} \displaystyle \left[{\left[ \begin{array}{cc} 0 &{{y_{2, \: 1}^{1}}-{y_{1, \: 2}^{1}}} \ {-{y_{2, \: 1}^{1}}+{y_{1, \: 2}^{1}}}& 0
(11)
Type: CartesianTensor
?(1,
2,
Fraction(Polynomial(Integer)))
A basis for the ideal defined by the coefficients of the
commutator is given by:
axiom
groebner(ravel(YC))
\label{eq12}\left[{{y_{2, \: 1}^{2}}-{y_{1, \: 2}^{2}}}, \:{{y_{2, \: 1}^{1}}-{y_{1, \: 2}^{1}}}\right]
(12)
Type: List(Polynomial(Integer))
The algebra Y is anti-commutative if:
Y = -Y
i j i j j i
\ / = \/ = \/
| \ /
k k k
This requires that the following (2,1)-tensor
\label{eq13} \mathcal{A} = \{ {a^k}_{ij} = {y^k}_{ij} + {y^k}_{ji} \}
(13)
(anti-commutator) is zero.
axiom
YA:=Y+reindex(Y,[1,3,2])
\label{eq14}\begin{array}{@{}l} \displaystyle \left[{\left[ \begin{array}{cc} {2 \ {y_{1, \: 1}^{1}}}&{{y_{2, \: 1}^{1}}+{y_{1, \: 2}^{1}}} \ {{y_{2, \: 1}^{1}}+{y_{1, \: 2}^{1}}}&{2 \ {y_{2, \: 2}^{1}}}
(14)
Type: CartesianTensor
?(1,
2,
Fraction(Polynomial(Integer)))
A basis for the ideal defined by the coefficients of the
commutator is given by:
axiom
groebner(ravel(YA))
\label{eq15}\left[{y_{2, \: 2}^{2}}, \:{y_{2, \: 2}^{1}}, \:{{y_{2, \: 1}^{2}}+{y_{1, \: 2}^{2}}}, \:{{y_{2, \: 1}^{1}}+{y_{1, \: 2}^{1}}}, \:{y_{1, \: 1}^{2}}, \:{y_{1, \: 1}^{1}}\right]
(15)
Type: List(Polynomial(Integer))
The Jacobi identity is:
X
Y = Y + Y
Y Y Y
i j k i j k i j k i j k
\ | / \ / / \ \ / \ \ /
\ | / \ / / \ \ / \ 0
\ | / \/ / \ \/ \/ \
\ | / \ / \ / \ \
\|/ = e k - i e - e j
| \/ \/ \/
| \ / /
l l l l
An algebra satisfies the Jacobi identity if and only if
the following (3,1)-tensor
\label{eq16} \Theta = \{ {\theta^l}_{ijk} = {y^l}_{ek} {y^e}_{ij} - {y^l}_{ie} {y^e}_{jk} - {y^l}_{ej} {y^e}_{ik} \}
(16)
is zero.
axiom
YX := YY - reindex(contract(Y,1,Y,2),[3,1,4,2]); ravel(YX)
\label{eq17}\begin{array}{@{}l} \displaystyle \left[{-{{y_{1, \: 1}^{2}}\ {y_{2, \: 1}^{1}}}-{{y_{1, \: 1}^{1}}^2}}, \: \right. \ \ \displaystyle \left.{{{y_{1, \: 1}^{2}}\ {y_{2, \: 2}^{1}}}+{{\left(-{y_{2, \: 1}^{1}}-{y_{1, \: 2}^{1}}\right)}\ {y_{2, \: 1}^{2}}}-{{y_{1, \: 1}^{1}}\ {y_{2, \: 1}^{1}}}}, \: \right. \ \ \displaystyle \left.{-{{y_{1, \: 1}^{2}}\ {y_{2, \: 2}^{1}}}+{{y_{1, \: 2}^{1}}\ {y_{2, \: 1}^{2}}}-{{y_{1, \: 2}^{2}}\ {y_{2, \: 1}^{1}}}-{{y_{1, \: 1}^{1}}\ {y_{1, \: 2}^{1}}}}, \right. \ \ \displaystyle \left.\:{-{{y_{2, \: 1}^{1}}\ {y_{2, \: 2}^{2}}}-{{y_{1, \: 1}^{1}}\ {y_{2, \: 2}^{1}}}}, \: \right. \ \ \displaystyle \left.{-{{y_{1, \: 1}^{2}}\ {y_{2, \: 2}^{1}}}-{{y_{1, \: 1}^{1}}\ {y_{1, \: 2}^{1}}}}, \: \right. \ \ \displaystyle \left.{-{{y_{1, \: 2}^{1}}\ {y_{2, \: 2}^{2}}}+{{\left(-{y_{2, \: 1}^{2}}+{y_{1, \: 2}^{2}}-{y_{1, \: 1}^{1}}\right)}\ {y_{2, \: 2}^{1}}}}, \: \right. \ \ \displaystyle \left.{ \begin{array}{@{}l} \displaystyle {{y_{1, \: 2}^{1}}\ {y_{2, \: 2}^{2}}}+{{\left(-{2 \ {y_{1, \: 2}^{2}}}+{y_{1, \: 1}^{1}}\right)}\ {y_{2, \: 2}^{1}}}-{{y_{1, \: 2}^{1}}\ {y_{2, \: 1}^{1}}}- \ \ \displaystyle {{y_{1, \: 2}^{1}}^2}
(17)
Type: List(Fraction(Polynomial(Integer)))
A scalar product is denoted by the (2,0)-tensor
U = \{ u_{ij} \}
axiom
U:T := unravel(concat
[[script(u,[[],[j,i]])
for i in 1..n]
for j in 1..n]
)
\label{eq18}\left[ \begin{array}{cc} {u^{1, \: 1}}&{u^{1, \: 2}} \ {u^{2, \: 1}}&{u^{2, \: 2}}
(18)
Type: CartesianTensor
?(1,
2,
Fraction(Polynomial(Integer)))
Definition 1
We say that the scalar product is associative if the tensor
equation holds:
Y = Y
U U
In other words, if the (3,0)-tensor:
i j k i j k i j k
\ | / \/ / \ \/
\|/ = \ / - \ /
0 0 0
\label{eq19} \Phi = \{ \phi^{ijk} = {y^e}_{ij} u_{ek} - u_{ie} {y_e}^{jk} \}
(19)
(three-point function) is zero.
axiom
YU := reindex(reindex(U,[2,1])*reindex(Y,[1,3,2]),[3,2,1])-U*Y
\label{eq20}\begin{array}{@{}l} \displaystyle \left[{\left[ \begin{array}{cc} {{\left({u^{2, \: 1}}-{u^{1, \: 2}}\right)}\ {y_{1, \: 1}^{2}}}&{-{{u^{1, \: 2}}\ {y_{2, \: 1}^{2}}}-{{u^{1, \: 1}}\ {y_{2, \: 1}^{1}}}+{{u^{2, \: 2}}\ {y_{1, \: 1}^{2}}}+{{u^{1, \: 2}}\ {y_{1, \: 1}^{1}}}} \ {{{u^{2, \: 1}}\ {y_{2, \: 1}^{2}}}+{{u^{1, \: 1}}\ {y_{2, \: 1}^{1}}}-{{u^{1, \: 2}}\ {y_{1, \: 2}^{2}}}-{{u^{1, \: 1}}\ {y_{1, \: 2}^{1}}}}&{-{{u^{1, \: 2}}\ {y_{2, \: 2}^{2}}}-{{u^{1, \: 1}}\ {y_{2, \: 2}^{1}}}+{{u^{2, \: 2}}\ {y_{2, \: 1}^{2}}}+{{u^{1, \: 2}}\ {y_{2, \: 1}^{1}}}}
(20)
Type: CartesianTensor
?(1,
2,
Fraction(Polynomial(Integer)))
Definition 2
An algebra with a non-degenerate associative scalar product
is called pre-Frobenius.
We may consider the problem where multiplication Y is given,
and look for all associative scalar products U = U(Y) or we
may consider an scalar product U as given, and look for all
algebras Y=Y(U) such that the scalar product is associative.
This problem can be solved using linear algebra.
axiom
)expose MCALCFN
MultiVariableCalculusFunctions is now explicitly exposed in frame
initial
K := jacobian(ravel(YU),concat(map(variables,ravel(Y)))::List Symbol);
Type: Matrix(Fraction(Polynomial(Integer)))
axiom
yy := transpose matrix [concat(map(variables,ravel(Y)))::List Symbol];
Type: Matrix(Polynomial(Integer))
axiom
K::OutputForm * yy::OutputForm = 0
\label{eq21}\begin{array}{@{}l} \displaystyle {{\left[ \begin{array}{cccccccc} 0 & 0 & 0 & 0 &{{u^{2, \: 1}}-{u^{1, \: 2}}}& 0 & 0 & 0 \ {u^{1, \: 2}}& -{u^{1, \: 1}}& 0 & 0 &{u^{2, \: 2}}& -{u^{1, \: 2}}& 0 & 0 \ 0 &{u^{1, \: 1}}& -{u^{1, \: 1}}& 0 & 0 &{u^{2, \: 1}}& -{u^{1, \: 2}}& 0 \ 0 &{u^{1, \: 2}}& 0 & -{u^{1, \: 1}}& 0 &{u^{2, \: 2}}& 0 & -{u^{1, \: 2}} \ -{u^{2, \: 1}}& 0 &{u^{1, \: 1}}& 0 & -{u^{2, \: 2}}& 0 &{u^{2, \: 1}}& 0 \ 0 & -{u^{2, \: 1}}&{u^{1, \: 2}}& 0 & 0 & -{u^{2, \: 2}}&{u^{2, \: 2}}& 0 \ 0 & 0 & -{u^{2, \: 1}}&{u^{1, \: 1}}& 0 & 0 & -{u^{2, \: 2}}&{u^{2, \: 1}} \ 0 & 0 & 0 &{-{u^{2, \: 1}}+{u^{1, \: 2}}}& 0 & 0 & 0 & 0
(21)
Type: Equation(OutputForm
?)
The matrix K transforms the coefficients of the tensor Y
into coefficients of the tensor \Phi. We are looking for
coefficients of the tensor U such that K transforms the
tensor Y into \Phi=0 for any Y.
A necessary condition for the equation to have a non-trivial
solution is that the matrix K be degenerate.
Theorem 1
All 2-dimensional pre-Frobenius algebras are symmetric.
Proof: Consider the determinant of the matrix K above.
axiom
Kd := factor(determinant(K)::DMP(concat map(variables,ravel(U)),FRAC INT))
\label{eq22}{{\left({u^{1, \: 2}}-{u^{2, \: 1}}\right)}^4}\ {{\left({{u^{1, \: 1}}\ {u^{2, \: 2}}}-{{u^{1, \: 2}}\ {u^{2, \: 1}}}\right)}^2}
(22)
Type: Factored(DistributedMultivariatePolynomial
?([*002u11,
*002u12,
*002u21,
*002u22],
Fraction(Integer)))
The scalar product must also be non-degenerate
axiom
Ud:DMP(concat map(variables,ravel(U)),FRAC INT) := determinant [[U[i,j] for j in 1..n] for i in 1..n]
\label{eq23}{{u^{1, \: 1}}\ {u^{2, \: 2}}}-{{u^{1, \: 2}}\ {u^{2, \: 1}}}
(23)
Type: DistributedMultivariatePolynomial
?([*002u11,
*002u12,
*002u21,
*002u22],
Fraction(Integer))
therefore U must be symmetric.
axiom
nthFactor(Kd,1)
\label{eq24}{u^{1, \: 2}}-{u^{2, \: 1}}
(24)
Type: DistributedMultivariatePolynomial
?([*002u11,
*002u12,
*002u21,
*002u22],
Fraction(Integer))
axiom
US:T := unravel(map(x+->subst(x,U[2,1]=U[1,2]),ravel U))
\label{eq25}\left[ \begin{array}{cc} {u^{1, \: 1}}&{u^{1, \: 2}} \ {u^{1, \: 2}}&{u^{2, \: 2}}
(25)
Type: CartesianTensor
?(1,
2,
Fraction(Polynomial(Integer)))
Theorem 2
All 2-dimensional algebras with associative scalar product
are commutative.
Proof: The basis of the null space of the symmetric
K matrix are all symmetric
axiom
YUS:T := reindex(reindex(US,[2,1])*reindex(Y,[1,3,2]),[3,2,1])-US*Y
\label{eq26}\begin{array}{@{}l} \displaystyle \left[{\left[ \begin{array}{cc} 0 &{-{{u^{1, \: 2}}\ {y_{2, \: 1}^{2}}}-{{u^{1, \: 1}}\ {y_{2, \: 1}^{1}}}+{{u^{2, \: 2}}\ {y_{1, \: 1}^{2}}}+{{u^{1, \: 2}}\ {y_{1, \: 1}^{1}}}} \ {{{u^{1, \: 2}}\ {y_{2, \: 1}^{2}}}+{{u^{1, \: 1}}\ {y_{2, \: 1}^{1}}}-{{u^{1, \: 2}}\ {y_{1, \: 2}^{2}}}-{{u^{1, \: 1}}\ {y_{1, \: 2}^{1}}}}&{-{{u^{1, \: 2}}\ {y_{2, \: 2}^{2}}}-{{u^{1, \: 1}}\ {y_{2, \: 2}^{1}}}+{{u^{2, \: 2}}\ {y_{2, \: 1}^{2}}}+{{u^{1, \: 2}}\ {y_{2, \: 1}^{1}}}}
(26)
Type: CartesianTensor
?(1,
2,
Fraction(Polynomial(Integer)))
axiom
KS := jacobian(ravel(YUS),concat(map(variables,ravel(Y)))::List Symbol);
Type: Matrix(Fraction(Polynomial(Integer)))
axiom
NS:=nullSpace(KS)
\label{eq27}\begin{array}{@{}l} \displaystyle \left[{\left[{{{u^{1, \: 1}}^2}\over{{u^{1, \: 2}}^2}}, \:{{u^{1, \: 1}}\over{u^{1, \: 2}}}, \:{{u^{1, \: 1}}\over{u^{1, \: 2}}}, \: 1, \: 0, \: 0, \: 0, \: 0 \right]}, \: \right. \ \ \displaystyle \left.{\left[ -{{u^{2, \: 2}}\over{u^{1, \: 2}}}, \: 0, \: 0, \: 0, \: 1, \: 0, \: 0, \: 0 \right]}, \: \right. \ \ \displaystyle \left.{\left[{{-{{u^{1, \: 1}}\ {u^{2, \: 2}}}+{{u^{1, \: 2}}^2}}\over{{u^{1, \: 2}}^2}}, \: -{{u^{2, \: 2}}\over{u^{1, \: 2}}}, \: -{{u^{2, \: 2}}\over{u^{1, \: 2}}}, \: 0, \: 0, \: 1, \: 1, \: 0 \right]}, \: \right. \ \ \displaystyle \left.{\left[{{u^{1, \: 1}}\over{u^{1, \: 2}}}, \: 1, \: 1, \: 0, \: 0, \: 0, \: 0, \: 1 \right]}\right]
(27)
Type: List(Vector(Fraction(Polynomial(Integer))))
axiom
SS:=map((x,y)+->x=y,concat map(variables,ravel Y),
entries reduce(+,[p[i]*NS.i for i in 1..#NS]))
\label{eq28}\begin{array}{@{}l} \displaystyle \left[{ \begin{array}{@{}l} \displaystyle {y_{1, \: 1}^{1}}={{\left( \begin{array}{@{}l} \displaystyle {{u^{1, \: 1}}\ {u^{1, \: 2}}\ {p_{4}}}+{{\left(-{{u^{1, \: 1}}\ {u^{2, \: 2}}}+{{u^{1, \: 2}}^2}\right)}\ {p_{3}}}- \ \ \displaystyle {{u^{1, \: 2}}\ {u^{2, \: 2}}\ {p_{2}}}+{{{u^{1, \: 1}}^2}\ {p_{1}}}
(28)
Type: List(Equation(Fraction(Polynomial(Integer))))
axiom
YS:T := unravel(map(x+->subst(x,SS),ravel Y))
\label{eq29}\begin{array}{@{}l} \displaystyle \left[{\left[ \begin{array}{cc} {{{{u^{1, \: 1}}\ {u^{1, \: 2}}\ {p_{4}}}+{{\left(-{{u^{1, \: 1}}\ {u^{2, \: 2}}}+{{u^{1, \: 2}}^2}\right)}\ {p_{3}}}-{{u^{1, \: 2}}\ {u^{2, \: 2}}\ {p_{2}}}+{{{u^{1, \: 1}}^2}\ {p_{1}}}}\over{{u^{1, \: 2}}^2}}&{{{{u^{1, \: 2}}\ {p_{4}}}-{{u^{2, \: 2}}\ {p_{3}}}+{{u^{1, \: 1}}\ {p_{1}}}}\over{u^{1, \: 2}}} \ {{{{u^{1, \: 2}}\ {p_{4}}}-{{u^{2, \: 2}}\ {p_{3}}}+{{u^{1, \: 1}}\ {p_{1}}}}\over{u^{1, \: 2}}}&{p_{1}}
(29)
Type: CartesianTensor
?(1,
2,
Fraction(Polynomial(Integer)))
This defines a 4-parameter family of 2-d pre-Frobenius algebras
axiom
test(unravel(map(x+->subst(x,SS),ravel YUS))$T=0*YU)
\label{eq30} \mbox{\rm true}
(30)
Type: Boolean
Alternatively we may consider
axiom
J := jacobian(ravel(YU),concat(map(variables,ravel(U)))::List Symbol);
Type: Matrix(Fraction(Polynomial(Integer)))
axiom
uu := transpose matrix [concat(map(variables,ravel(U)))::List Symbol];
Type: Matrix(Polynomial(Integer))
axiom
J::OutputForm * uu::OutputForm = 0
\label{eq31}\begin{array}{@{}l} \displaystyle {{\left[ \begin{array}{cccc} 0 & -{y_{1, \: 1}^{2}}&{y_{1, \: 1}^{2}}& 0 \ -{y_{2, \: 1}^{1}}&{-{y_{2, \: 1}^{2}}+{y_{1, \: 1}^{1}}}& 0 &{y_{1, \: 1}^{2}} \ {{y_{2, \: 1}^{1}}-{y_{1, \: 2}^{1}}}& -{y_{1, \: 2}^{2}}&{y_{2, \: 1}^{2}}& 0 \ -{y_{2, \: 2}^{1}}&{-{y_{2, \: 2}^{2}}+{y_{2, \: 1}^{1}}}& 0 &{y_{2, \: 1}^{2}} \ {y_{1, \: 2}^{1}}& 0 &{{y_{1, \: 2}^{2}}-{y_{1, \: 1}^{1}}}& -{y_{1, \: 1}^{2}} \ 0 &{y_{1, \: 2}^{1}}& -{y_{2, \: 1}^{1}}&{-{y_{2, \: 1}^{2}}+{y_{1, \: 2}^{2}}} \ {y_{2, \: 2}^{1}}& 0 &{{y_{2, \: 2}^{2}}-{y_{1, \: 2}^{1}}}& -{y_{1, \: 2}^{2}} \ 0 &{y_{2, \: 2}^{1}}& -{y_{2, \: 2}^{1}}& 0
(31)
Type: Equation(OutputForm
?)
The matrix J transforms the coefficients of the tensor U
into coefficients of the tensor \Phi. We are looking for
coefficients of the tensor Y such that J transforms the
tensor U into \Phi=0 for any U.
A necessary condition for the equation to have a non-trivial
solution is that all 70 of the 4x4 sub-matrices of J are
degenerate. To this end we can form the polynomial ideal of
the determinants of these sub-matrices.
axiom
JP:=ideal concat concat concat
[[[[ determinant(
matrix([row(J,i1),row(J,i2),row(J,i3),row(J,i4)]))
for i4 in (i3+1)..maxRowIndex(J) ]
for i3 in (i2+1)..(maxRowIndex(J)-1) ]
for i2 in (i1+1)..(maxRowIndex(J)-2) ]
for i1 in minRowIndex(J)..(maxRowIndex(J)-3) ];
Type: PolynomialIdeals
?(Fraction(Integer),
IndexedExponents
?(Symbol),
Symbol,
Polynomial(Fraction(Integer)))
axiom
#generators(%)
Theorem 3
If a 2-d algebra is associative, commutative, anti-commutative
or if it satisfies the Jacobi identity then it is a
pre-Frobenius algebra.
Proof
Consider the ideals of the associator, commutator, anti-commutator
and Jacobi identity
axiom
YYI:=ideal ravel YY;
Type: PolynomialIdeals
?(Fraction(Integer),
IndexedExponents
?(Symbol),
Symbol,
Polynomial(Fraction(Integer)))
axiom
in?(JP,YYI) -- associative
\label{eq33} \mbox{\rm true}
(33)
Type: Boolean
axiom
YCI:=ideal ravel YC;
Type: PolynomialIdeals
?(Fraction(Integer),
IndexedExponents
?(Symbol),
Symbol,
Polynomial(Fraction(Integer)))
axiom
in?(JP,YCI) -- commutative
\label{eq34} \mbox{\rm true}
(34)
Type: Boolean
axiom
YAI:=ideal ravel YA;
Type: PolynomialIdeals
?(Fraction(Integer),
IndexedExponents
?(Symbol),
Symbol,
Polynomial(Fraction(Integer)))
axiom
in?(JP,YAI) -- anti-commutative
\label{eq35} \mbox{\rm true}
(35)
Type: Boolean
axiom
YXI:=ideal ravel YX;
Type: PolynomialIdeals
?(Fraction(Integer),
IndexedExponents
?(Symbol),
Symbol,
Polynomial(Fraction(Integer)))
axiom
in?(JP,YXI) -- Jacobi identity
\label{eq36} \mbox{\rm true}
(36)
Type: Boolean
Y-forms
Three traces of two graftings of an algebra gives six
(2,0)-forms.
Left snail and right snail:
LS RS
Y /\ /\ Y
Y ) ( Y
\/ \/
i j j i
\/ \/
\ /\ /\ /
e f \ / f e
\/ \ / \/
\ / \ /
f / \ f
\/ \/
\label{eq37} LS = \{ {y^e}_{ij} {y^f}_{ef} \} \ RS = \{ {y^f}_{fe} {y^e}_{ji} \}
(37)
axiom
LS:=contract(Y*Y,1,2)
\label{eq38}\left[ \begin{array}{cc} {{{y_{1, \: 1}^{2}}\ {y_{2, \: 2}^{2}}}+{{y_{1, \: 1}^{2}}\ {y_{2, \: 1}^{1}}}+{{y_{1, \: 1}^{1}}\ {y_{1, \: 2}^{2}}}+{{y_{1, \: 1}^{1}}^2}}&{{{y_{2, \: 1}^{2}}\ {y_{2, \: 2}^{2}}}+{{y_{2, \: 1}^{1}}\ {y_{2, \: 1}^{2}}}+{{\left({y_{1, \: 2}^{2}}+{y_{1, \: 1}^{1}}\right)}\ {y_{2, \: 1}^{1}}}} \ {{{y_{1, \: 2}^{2}}\ {y_{2, \: 2}^{2}}}+{{y_{1, \: 2}^{2}}\ {y_{2, \: 1}^{1}}}+{{y_{1, \: 2}^{1}}\ {y_{1, \: 2}^{2}}}+{{y_{1, \: 1}^{1}}\ {y_{1, \: 2}^{1}}}}&{{{y_{2, \: 2}^{2}}^2}+{{y_{2, \: 1}^{1}}\ {y_{2, \: 2}^{2}}}+{{\left({y_{1, \: 2}^{2}}+{y_{1, \: 1}^{1}}\right)}\ {y_{2, \: 2}^{1}}}}
(38)
Type: CartesianTensor
?(1,
2,
Fraction(Polynomial(Integer)))
axiom
RS:=reindex(contract(reindex(Y,[1,3,2])*reindex(Y,[1,3,2]),1,2),[2,1])
\label{eq39}\left[ \begin{array}{cc} {{{y_{1, \: 1}^{2}}\ {y_{2, \: 2}^{2}}}+{{y_{1, \: 1}^{1}}\ {y_{2, \: 1}^{2}}}+{{y_{1, \: 1}^{2}}\ {y_{1, \: 2}^{1}}}+{{y_{1, \: 1}^{1}}^2}}&{{{y_{2, \: 1}^{2}}\ {y_{2, \: 2}^{2}}}+{{\left({y_{2, \: 1}^{1}}+{y_{1, \: 2}^{1}}\right)}\ {y_{2, \: 1}^{2}}}+{{y_{1, \: 1}^{1}}\ {y_{2, \: 1}^{1}}}} \ {{{y_{1, \: 2}^{2}}\ {y_{2, \: 2}^{2}}}+{{y_{1, \: 2}^{1}}\ {y_{2, \: 1}^{2}}}+{{y_{1, \: 2}^{1}}\ {y_{1, \: 2}^{2}}}+{{y_{1, \: 1}^{1}}\ {y_{1, \: 2}^{1}}}}&{{{y_{2, \: 2}^{2}}^2}+{{y_{1, \: 2}^{1}}\ {y_{2, \: 2}^{2}}}+{{\left({y_{2, \: 1}^{2}}+{y_{1, \: 1}^{1}}\right)}\ {y_{2, \: 2}^{1}}}}
(39)
Type: CartesianTensor
?(1,
2,
Fraction(Polynomial(Integer)))
axiom
test(LS=RS)
\label{eq40} \mbox{\rm false}
(40)
Type: Boolean
Left and right deer:
RD LD
\ /\/ \/\ /
Y /\ /\ Y
Y ) ( Y
\/ \/
i j i j
\ /\ / \ /\ /
\ f \ / \ / f /
\/ \/ \/ \/
\ /\ /\ /
e / \ / \ e
\/ \ / \/
\ / \ /
f / \ f
\/ \/
\label{eq41} RD = \{ {y^e}_{if} {y^f}_{ej} \} \ LD = \{ {y^f}_{ie} {y^e}_{fj} \}
(41)
Left and right deer forms are identical but different from snails.
axiom
RD:=contract(Y*Y,1,3)
\label{eq42}\left[ \begin{array}{cc} {{{y_{1, \: 2}^{2}}\ {y_{2, \: 1}^{2}}}+{{y_{1, \: 1}^{2}}\ {y_{2, \: 1}^{1}}}+{{y_{1, \: 1}^{2}}\ {y_{1, \: 2}^{1}}}+{{y_{1, \: 1}^{1}}^2}}&{{{y_{2, \: 1}^{2}}\ {y_{2, \: 2}^{2}}}+{{y_{1, \: 1}^{2}}\ {y_{2, \: 2}^{1}}}+{{y_{2, \: 1}^{1}}\ {y_{2, \: 1}^{2}}}+{{y_{1, \: 1}^{1}}\ {y_{2, \: 1}^{1}}}} \ {{{y_{1, \: 2}^{2}}\ {y_{2, \: 2}^{2}}}+{{y_{1, \: 1}^{2}}\ {y_{2, \: 2}^{1}}}+{{y_{1, \: 2}^{1}}\ {y_{1, \: 2}^{2}}}+{{y_{1, \: 1}^{1}}\ {y_{1, \: 2}^{1}}}}&{{{y_{2, \: 2}^{2}}^2}+{{\left({y_{2, \: 1}^{2}}+{y_{1, \: 2}^{2}}\right)}\ {y_{2, \: 2}^{1}}}+{{y_{1, \: 2}^{1}}\ {y_{2, \: 1}^{1}}}}
(42)
Type: CartesianTensor
?(1,
2,
Fraction(Polynomial(Integer)))
axiom
LD:=reindex(contract(reindex(Y,[1,3,2])*reindex(Y,[1,3,2]),1,3),[2,1])
\label{eq43}\left[ \begin{array}{cc} {{{y_{1, \: 2}^{2}}\ {y_{2, \: 1}^{2}}}+{{y_{1, \: 1}^{2}}\ {y_{2, \: 1}^{1}}}+{{y_{1, \: 1}^{2}}\ {y_{1, \: 2}^{1}}}+{{y_{1, \: 1}^{1}}^2}}&{{{y_{2, \: 1}^{2}}\ {y_{2, \: 2}^{2}}}+{{y_{1, \: 1}^{2}}\ {y_{2, \: 2}^{1}}}+{{y_{2, \: 1}^{1}}\ {y_{2, \: 1}^{2}}}+{{y_{1, \: 1}^{1}}\ {y_{2, \: 1}^{1}}}} \ {{{y_{1, \: 2}^{2}}\ {y_{2, \: 2}^{2}}}+{{y_{1, \: 1}^{2}}\ {y_{2, \: 2}^{1}}}+{{y_{1, \: 2}^{1}}\ {y_{1, \: 2}^{2}}}+{{y_{1, \: 1}^{1}}\ {y_{1, \: 2}^{1}}}}&{{{y_{2, \: 2}^{2}}^2}+{{\left({y_{2, \: 1}^{2}}+{y_{1, \: 2}^{2}}\right)}\ {y_{2, \: 2}^{1}}}+{{y_{1, \: 2}^{1}}\ {y_{2, \: 1}^{1}}}}
(43)
Type: CartesianTensor
?(1,
2,
Fraction(Polynomial(Integer)))
axiom
test(LD=RD)
\label{eq44} \mbox{\rm true}
(44)
Type: Boolean
axiom
test(RD=RS)
\label{eq45} \mbox{\rm false}
(45)
Type: Boolean
axiom
test(RD=LS)
\label{eq46} \mbox{\rm false}
(46)
Type: Boolean
Left and right turtles:
RT LT
/\ / / \ \ /\
( Y / \ Y )
\ Y Y /
\/ \/
i j i j
/\ / / \ \ /\
/ f / / \ \ f \
/ \/ / \ \/ \
\ \ / \ / /
\ e / \ e /
\ \/ \/ /
\ / \ /
\ f f /
\/ \/
\label{eq47} RT = \{ {y^e}_{fi} {y^f}_{ej} \} \ LT = \{ {y^f}_{ie} {y^e}_{jf} \}
(47)
axiom
RT:=contract(Y*Y,1,4)
\label{eq48}\left[ \begin{array}{cc} {{{y_{2, \: 1}^{2}}^2}+{2 \ {y_{1, \: 1}^{2}}\ {y_{2, \: 1}^{1}}}+{{y_{1, \: 1}^{1}}^2}}&{{{y_{2, \: 1}^{2}}\ {y_{2, \: 2}^{2}}}+{{y_{1, \: 1}^{2}}\ {y_{2, \: 2}^{1}}}+{{y_{1, \: 2}^{2}}\ {y_{2, \: 1}^{1}}}+{{y_{1, \: 1}^{1}}\ {y_{1, \: 2}^{1}}}} \ {{{y_{2, \: 1}^{2}}\ {y_{2, \: 2}^{2}}}+{{y_{1, \: 1}^{2}}\ {y_{2, \: 2}^{1}}}+{{y_{1, \: 2}^{2}}\ {y_{2, \: 1}^{1}}}+{{y_{1, \: 1}^{1}}\ {y_{1, \: 2}^{1}}}}&{{{y_{2, \: 2}^{2}}^2}+{2 \ {y_{1, \: 2}^{2}}\ {y_{2, \: 2}^{1}}}+{{y_{1, \: 2}^{1}}^2}}
(48)
Type: CartesianTensor
?(1,
2,
Fraction(Polynomial(Integer)))
axiom
LT:=reindex(contract(reindex(Y,[1,3,2])*reindex(Y,[1,3,2]),1,4),[2,1])
\label{eq49}\left[ \begin{array}{cc} {{{y_{1, \: 2}^{2}}^2}+{2 \ {y_{1, \: 1}^{2}}\ {y_{1, \: 2}^{1}}}+{{y_{1, \: 1}^{1}}^2}}&{{{y_{1, \: 2}^{2}}\ {y_{2, \: 2}^{2}}}+{{y_{1, \: 1}^{2}}\ {y_{2, \: 2}^{1}}}+{{y_{1, \: 2}^{1}}\ {y_{2, \: 1}^{2}}}+{{y_{1, \: 1}^{1}}\ {y_{2, \: 1}^{1}}}} \ {{{y_{1, \: 2}^{2}}\ {y_{2, \: 2}^{2}}}+{{y_{1, \: 1}^{2}}\ {y_{2, \: 2}^{1}}}+{{y_{1, \: 2}^{1}}\ {y_{2, \: 1}^{2}}}+{{y_{1, \: 1}^{1}}\ {y_{2, \: 1}^{1}}}}&{{{y_{2, \: 2}^{2}}^2}+{2 \ {y_{2, \: 1}^{2}}\ {y_{2, \: 2}^{1}}}+{{y_{2, \: 1}^{1}}^2}}
(49)
Type: CartesianTensor
?(1,
2,
Fraction(Polynomial(Integer)))
axiom
test(LT=RT)
\label{eq50} \mbox{\rm false}
(50)
Type: Boolean
The turles are symmetric
axiom
test(RT=reindex(RT,[2,1])
Line 1: test(RT=reindex(RT,[2,1])
....A...................B
Error A: Missing mate.
Error B: syntax error at top level
Error B: Possibly missing a )
3 error(s) parsing
test(LT=reindex(LT,[2,1])
Line 2: test(LT=reindex(LT,[2,1])
....A...................B
Error A: Missing mate.
Error B: syntax error at top level
Error B: Possibly missing a )
3 error(s) parsing
Five of the six forms are independent.
axiom
test(RT=RS)
\label{eq51} \mbox{\rm false}
(51)
Type: Boolean
axiom
test(RT=LS)
\label{eq52} \mbox{\rm false}
(52)
Type: Boolean
axiom
test(RT=RD)
\label{eq53} \mbox{\rm false}
(53)
Type: Boolean
axiom
test(LT=RS)
\label{eq54} \mbox{\rm false}
(54)
Type: Boolean
axiom
test(LT=LS)
\label{eq55} \mbox{\rm false}
(55)
Type: Boolean
axiom
test(LT=RD)
\label{eq56} \mbox{\rm false}
(56)
Type: Boolean
Associativity implies right turtle equals right snail
and left turtle equals left snail.
axiom
in?(ideal ravel(RT-RS),YYI)
\label{eq57} \mbox{\rm true}
(57)
Type: Boolean
axiom
in?(ideal ravel(LT-LS),YYI)
\label{eq58} \mbox{\rm true}
(58)
Type: Boolean
If the Jacobi identity holds then both snails are zero
axiom
in?(ideal ravel(RS),YXI)
\label{eq59} \mbox{\rm true}
(59)
Type: Boolean
axiom
in?(ideal ravel(LS),YXI)
\label{eq60} \mbox{\rm true}
(60)
Type: Boolean
and right turtle and deer have opposite signs
axiom
in?(ideal ravel(RT+RD),YXI)
\label{eq61} \mbox{\rm true}
(61)
Type: Boolean