An n-dimensional algebra is represented by a (1,2)-tensor
Y=\{ {y_k}^{ji} \ i,j,k =1,2, ... n \}
viewed as an operator with two inputs i,j and one
output k. For example in 2 dimensions
axiom
)library DEXPR
DistributedExpression is now explicitly exposed in frame initial
DistributedExpression will be automatically loaded when needed from
/var/zope2/var/LatexWiki/DEXPR.NRLIB/DEXPR
n:=2
axiom
T:=CartesianTensor(1,n,FRAC POLY INT)
\label{eq2}\hbox{\axiomType{CartesianTensor}\ } (1, 2, \hbox{\axiomType{Fraction}\ } (\hbox{\axiomType{Polynomial}\ } (\hbox{\axiomType{Integer}\ })))
(2)
Type: Domain
axiom
--T:=CartesianTensor(1,n,HDMP(concat[concat concat
-- [[[script(y,[[k],[j,i]])
-- for i in 1..n]
-- for j in 1..n]
-- for k in 1..n],
-- [script(u,[[i]]) for i in 1..n],
-- [script(v,[[i]]) for i in 1..n] ],FRAC INT))
Y:T := unravel(concat concat
[[[script(y,[[k],[j,i]])
for i in 1..n]
for j in 1..n]
for k in 1..n]
)
\label{eq3}\begin{array}{@{}l} \displaystyle \left[{\left[ \begin{array}{cc} {y_{1}^{1, \: 1}}&{y_{1}^{1, \: 2}} \ {y_{1}^{2, \: 1}}&{y_{1}^{2, \: 2}}
(3)
Type: CartesianTensor
?(1,
2,
Fraction(Polynomial(Integer)))
Given two vectors U=\{ u_i \} and V=\{ v_j \}
axiom
U:T := unravel([script(u,[[i]]) for i in 1..n])
\label{eq4}\left[{u_{1}}, \:{u_{2}}\right]
(4)
Type: CartesianTensor
?(1,
2,
Fraction(Polynomial(Integer)))
axiom
V:T := unravel([script(v,[[i]]) for i in 1..n])
\label{eq5}\left[{v_{1}}, \:{v_{2}}\right]
(5)
Type: CartesianTensor
?(1,
2,
Fraction(Polynomial(Integer)))
the tensor Y operates on their tensor product to
yield a vector W=\{ w_k = {y_k}^{ji} u_i v_j \}
axiom
W:=contract(contract(Y,3,product(U,V),1),2,3)
\label{eq6}\begin{array}{@{}l} \displaystyle \left[{{{\left({{y_{1}^{2, \: 2}}\ {u_{2}}}+{{y_{1}^{2, \: 1}}\ {u_{1}}}\right)}\ {v_{2}}}+{{\left({{y_{1}^{1, \: 2}}\ {u_{2}}}+{{y_{1}^{1, \: 1}}\ {u_{1}}}\right)}\ {v_{1}}}}, \: \right. \ \ \displaystyle \left.{{{\left({{y_{2}^{2, \: 2}}\ {u_{2}}}+{{y_{2}^{2, \: 1}}\ {u_{1}}}\right)}\ {v_{2}}}+{{\left({{y_{2}^{1, \: 2}}\ {u_{2}}}+{{y_{2}^{1, \: 1}}\ {u_{1}}}\right)}\ {v_{1}}}}\right]
(6)
Type: CartesianTensor
?(1,
2,
Fraction(Polynomial(Integer)))
Diagram:
U V
2i 3j
\ /
|
1k
W
or in a more convenient notation:
axiom
W:=(Y*U)*V
\label{eq7}\begin{array}{@{}l} \displaystyle \left[{{{\left({{y_{1}^{2, \: 2}}\ {u_{2}}}+{{y_{1}^{2, \: 1}}\ {u_{1}}}\right)}\ {v_{2}}}+{{\left({{y_{1}^{1, \: 2}}\ {u_{2}}}+{{y_{1}^{1, \: 1}}\ {u_{1}}}\right)}\ {v_{1}}}}, \: \right. \ \ \displaystyle \left.{{{\left({{y_{2}^{2, \: 2}}\ {u_{2}}}+{{y_{2}^{2, \: 1}}\ {u_{1}}}\right)}\ {v_{2}}}+{{\left({{y_{2}^{1, \: 2}}\ {u_{2}}}+{{y_{2}^{1, \: 1}}\ {u_{1}}}\right)}\ {v_{1}}}}\right]
(7)
Type: CartesianTensor
?(1,
2,
Fraction(Polynomial(Integer)))
The algebra Y is commutative if the following tensor
(the commutator) is zero
axiom
K:=Y-reindex(Y,[1,3,2])
\label{eq8}\begin{array}{@{}l} \displaystyle \left[{\left[ \begin{array}{cc} 0 &{-{y_{1}^{2, \: 1}}+{y_{1}^{1, \: 2}}} \ {{y_{1}^{2, \: 1}}-{y_{1}^{1, \: 2}}}& 0
(8)
Type: CartesianTensor
?(1,
2,
Fraction(Polynomial(Integer)))
A basis for the ideal defined by the coefficients of the
commutator is given by:
axiom
C:=groebner(ravel(K))
\label{eq9}\left[{{y_{2}^{2, \: 1}}-{y_{2}^{1, \: 2}}}, \:{{y_{1}^{2, \: 1}}-{y_{1}^{1, \: 2}}}\right]
(9)
Type: List(Polynomial(Integer))
An algebra is associative if:
Y I = I Y
Y Y
Note: right figure is mirror image of left!
2 3 6 2 5 6 2 3 4
\/ / \ \/ \ | /
\/ = \/ = \|/
\ / |
4 1 1
In other words an algebra is associative if and only
if the following (3,1)-tensor
A=\{ {a_s}^{kji} = {y_s}^{kr} {y_r}^{ji} - {y_r}^{kj} {y_s}^{ri} \}
is zero.
axiom
test(Y*Y = contract(product(Y,Y),3,4))
\label{eq10} \mbox{\rm true}
(10)
Type: Boolean
axiom
test(Y*Y = contract(Y,3,Y,1))
\label{eq11} \mbox{\rm true}
(11)
Type: Boolean
axiom
test(reindex(reindex(Y,[1,3,2])*reindex(Y,[1,3,2]),[1,4,3,2]) = reindex(contract(product(Y,Y),1,5),[3,1,2,4]))
\label{eq12} \mbox{\rm true}
(12)
Type: Boolean
axiom
test(reindex(reindex(Y,[1,3,2])*reindex(Y,[1,3,2]),[1,4,3,2]) = reindex(contract(Y,1,Y,2),[3,1,2,4]))
\label{eq13} \mbox{\rm true}
(13)
Type: Boolean
axiom
AA := reindex(reindex(Y,[1,3,2])*reindex(Y,[1,3,2]),[1,4,3,2])-Y*Y; ravel(AA)
\label{eq14}\begin{array}{@{}l} \displaystyle \left[{{\left({y_{1}^{2, \: 1}}-{y_{1}^{1, \: 2}}\right)}\ {y_{2}^{1, \: 1}}}, \:{-{{y_{1}^{1, \: 2}}\ {y_{2}^{1, \: 2}}}+{{y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 1}}}}, \: \right. \ \ \displaystyle \left.{-{{y_{1}^{1, \: 2}}\ {y_{2}^{2, \: 1}}}+{{y_{1}^{2, \: 1}}\ {y_{2}^{1, \: 2}}}-{{y_{1}^{1, \: 1}}\ {y_{1}^{2, \: 1}}}+{{y_{1}^{1, \: 1}}\ {y_{1}^{1, \: 2}}}}, \right. \ \ \displaystyle \left.\:{-{{y_{1}^{1, \: 2}}\ {y_{2}^{2, \: 2}}}+{{y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 2}}}-{{y_{1}^{1, \: 1}}\ {y_{1}^{2, \: 2}}}+{{y_{1}^{1, \: 2}}^2}}, \: \right. \ \ \displaystyle \left.{{{y_{1}^{2, \: 1}}\ {y_{2}^{2, \: 1}}}-{{y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 1}}}}, \:{{{y_{1}^{2, \: 2}}\ {y_{2}^{2, \: 1}}}-{{y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 2}}}}, \: \right. \ \ \displaystyle \left.{{{y_{1}^{2, \: 1}}\ {y_{2}^{2, \: 2}}}-{{y_{1}^{2, \: 2}}\ {y_{2}^{2, \: 1}}}+{{y_{1}^{1, \: 1}}\ {y_{1}^{2, \: 2}}}-{{y_{1}^{2, \: 1}}^2}}, \: \right. \ \ \displaystyle \left.{{\left(-{y_{1}^{2, \: 1}}+{y_{1}^{1, \: 2}}\right)}\ {y_{1}^{2, \: 2}}}, \:{{{y_{2}^{1, \: 1}}\ {y_{2}^{2, \: 1}}}-{{y_{2}^{1, \: 1}}\ {y_{2}^{1, \: 2}}}}, \: \right. \ \ \displaystyle \left.{{{y_{2}^{1, \: 1}}\ {y_{2}^{2, \: 2}}}-{{y_{2}^{1, \: 2}}^2}+{{y_{1}^{1, \: 1}}\ {y_{2}^{1, \: 2}}}-{{y_{1}^{1, \: 2}}\ {y_{2}^{1, \: 1}}}}, \: \right. \ \ \displaystyle \left.{{\left(-{y_{1}^{2, \: 1}}+{y_{1}^{1, \: 2}}\right)}\ {y_{2}^{1, \: 1}}}, \:{{{y_{1}^{1, \: 2}}\ {y_{2}^{1, \: 2}}}-{{y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 1}}}}, \: \right. \ \ \displaystyle \left.{-{{y_{2}^{1, \: 1}}\ {y_{2}^{2, \: 2}}}+{{y_{2}^{2, \: 1}}^2}-{{y_{1}^{1, \: 1}}\ {y_{2}^{2, \: 1}}}+{{y_{1}^{2, \: 1}}\ {y_{2}^{1, \: 1}}}}, \: \right. \ \ \displaystyle \left.{{{\left({y_{2}^{2, \: 1}}-{y_{2}^{1, \: 2}}\right)}\ {y_{2}^{2, \: 2}}}-{{y_{1}^{1, \: 2}}\ {y_{2}^{2, \: 1}}}+{{y_{1}^{2, \: 1}}\ {y_{2}^{1, \: 2}}}}, \: \right. \ \ \displaystyle \left.{-{{y_{1}^{2, \: 1}}\ {y_{2}^{2, \: 1}}}+{{y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 1}}}}, \: \right. \ \ \displaystyle \left.{-{{y_{1}^{2, \: 2}}\ {y_{2}^{2, \: 1}}}+{{y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 2}}}}\right]
(14)
Type: List(Fraction(Polynomial(Integer)))
axiom
AB:=groebner(ravel(AA))
\label{eq15}\begin{array}{@{}l} \displaystyle \left[{{{\left({y_{2}^{2, \: 1}}-{y_{2}^{1, \: 2}}\right)}\ {y_{2}^{2, \: 2}}}+{{y_{1}^{1, \: 1}}\ {y_{1}^{2, \: 1}}}-{{y_{1}^{1, \: 1}}\ {y_{1}^{1, \: 2}}}}, \: \right. \ \ \displaystyle \left.{{{y_{2}^{1, \: 1}}\ {y_{2}^{2, \: 2}}}-{{y_{2}^{1, \: 2}}^2}+{{y_{1}^{1, \: 1}}\ {y_{2}^{1, \: 2}}}-{{y_{1}^{1, \: 2}}\ {y_{2}^{1, \: 1}}}}, \: \right. \ \ \displaystyle \left.{{{y_{1}^{2, \: 1}}\ {y_{2}^{2, \: 2}}}-{{y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 2}}}+{{y_{1}^{1, \: 1}}\ {y_{1}^{2, \: 2}}}-{{y_{1}^{2, \: 1}}^2}}, \: \right. \ \ \displaystyle \left.{{{y_{1}^{1, \: 2}}\ {y_{2}^{2, \: 2}}}-{{y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 2}}}+{{y_{1}^{1, \: 1}}\ {y_{1}^{2, \: 2}}}-{{y_{1}^{1, \: 2}}^2}}, \: \right. \ \ \displaystyle \left.{{{y_{2}^{2, \: 1}}^2}-{{y_{1}^{1, \: 1}}\ {y_{2}^{2, \: 1}}}-{{y_{2}^{1, \: 2}}^2}+{{y_{1}^{1, \: 1}}\ {y_{2}^{1, \: 2}}}}, \: \right. \ \ \displaystyle \left.{{{\left({{y_{2}^{1, \: 2}}^2}-{{y_{1}^{1, \: 1}}\ {y_{2}^{1, \: 2}}}\right)}\ {y_{2}^{2, \: 1}}}-{{y_{2}^{1, \: 2}}^3}+{{y_{1}^{1, \: 1}}\ {{y_{2}^{1, \: 2}}^2}}}, \: \right. \ \ \displaystyle \left.{{{y_{2}^{1, \: 1}}\ {y_{2}^{2, \: 1}}}-{{y_{2}^{1, \: 1}}\ {y_{2}^{1, \: 2}}}}, \:{{{y_{1}^{2, \: 2}}\ {y_{2}^{2, \: 1}}}-{{y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 2}}}}, \: \right. \ \ \displaystyle \left.{{{y_{1}^{2, \: 1}}\ {y_{2}^{2, \: 1}}}-{{y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 1}}}}, \: \right. \ \ \displaystyle \left.{{{y_{1}^{1, \: 2}}\ {y_{2}^{2, \: 1}}}-{{y_{1}^{2, \: 1}}\ {y_{2}^{1, \: 2}}}+{{y_{1}^{1, \: 1}}\ {y_{1}^{2, \: 1}}}-{{y_{1}^{1, \: 1}}\ {y_{1}^{1, \: 2}}}}, \: \right. \ \ \displaystyle \left.{ \begin{array}{@{}l} \displaystyle {{y_{1}^{2, \: 1}}\ {{y_{2}^{1, \: 2}}^2}}+{{\left(-{{y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 1}}}-{{y_{1}^{1, \: 1}}\ {y_{1}^{2, \: 1}}}\right)}\ {y_{2}^{1, \: 2}}}+ \ \ \displaystyle {{y_{1}^{1, \: 1}}\ {y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 1}}}
(15)
Type: List(Polynomial(Integer))
axiom
#AB
The Jacobi identity requires the following tensor to be zero:
2 3 6 2 5 6 2 6 3
\ / / \ \ / \ \/
\/ / \ \/ \/\
\/ - \/ - \/
\ / \
4 1 4
axiom
BA := AA - reindex(contract(Y,1,Y,2),[3,1,4,2]); ravel(BA)
\label{eq17}\begin{array}{@{}l} \displaystyle \left[{-{{y_{1}^{1, \: 2}}\ {y_{2}^{1, \: 1}}}-{{y_{1}^{1, \: 1}}^2}}, \: \right. \ \ \displaystyle \left.{{{\left(-{y_{1}^{2, \: 1}}-{y_{1}^{1, \: 2}}\right)}\ {y_{2}^{1, \: 2}}}+{{y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 1}}}-{{y_{1}^{1, \: 1}}\ {y_{1}^{1, \: 2}}}}, \: \right. \ \ \displaystyle \left.{-{{y_{1}^{1, \: 2}}\ {y_{2}^{2, \: 1}}}+{{y_{1}^{2, \: 1}}\ {y_{2}^{1, \: 2}}}-{{y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 1}}}-{{y_{1}^{1, \: 1}}\ {y_{1}^{2, \: 1}}}}, \right. \ \ \displaystyle \left.\:{-{{y_{1}^{1, \: 2}}\ {y_{2}^{2, \: 2}}}-{{y_{1}^{1, \: 1}}\ {y_{1}^{2, \: 2}}}}, \: \right. \ \ \displaystyle \left.{-{{y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 1}}}-{{y_{1}^{1, \: 1}}\ {y_{1}^{2, \: 1}}}}, \: \right. \ \ \displaystyle \left.{-{{y_{1}^{2, \: 1}}\ {y_{2}^{2, \: 2}}}+{{y_{1}^{2, \: 2}}\ {y_{2}^{2, \: 1}}}-{{y_{1}^{2, \: 2}}\ {y_{2}^{1, \: 2}}}-{{y_{1}^{1, \: 1}}\ {y_{1}^{2, \: 2}}}}, \right. \ \ \displaystyle \left.\: \right. \ \ \displaystyle \left.{ \begin{array}{@{}l} \displaystyle {{y_{1}^{2, \: 1}}\ {y_{2}^{2, \: 2}}}-{2 \ {y_{1}^{2, \: 2}}\ {y_{2}^{2, \: 1}}}+{{y_{1}^{1, \: 1}}\ {y_{1}^{2, \: 2}}}-{{y_{1}^{2, \: 1}}^2}- \ \ \displaystyle {{y_{1}^{1, \: 2}}\ {y_{1}^{2, \: 1}}}
(17)
Type: List(Fraction(Polynomial(Integer)))
axiom
BB:=groebner(ravel(BA));
Type: List(Polynomial(Integer))
axiom
#BB
A scalar product is denoted by U = \{ u^{ij} \}
axiom
U:T := unravel(concat
[[script(u,[[],[j,i]])
for i in 1..n]
for j in 1..n]
)
\label{eq19}\left[ \begin{array}{cc} {u^{1, \: 1}}&{u^{1, \: 2}} \ {u^{2, \: 1}}&{u^{2, \: 2}}
(19)
Type: CartesianTensor
?(1,
2,
Fraction(Polynomial(Integer)))
Definition 1
We say that the scalar product is "associative" if the following
tensor equation holds:
Y I = I Y
U U
axiom
UA := reindex(reindex(U,[2,1])*reindex(Y,[1,3,2]),[3,2,1])-U*Y
\label{eq20}\begin{array}{@{}l} \displaystyle \left[{\left[ \begin{array}{cc} {{\left({u^{2, \: 1}}-{u^{1, \: 2}}\right)}\ {y_{2}^{1, \: 1}}}&{-{{u^{1, \: 2}}\ {y_{2}^{1, \: 2}}}+{{u^{2, \: 2}}\ {y_{2}^{1, \: 1}}}-{{u^{1, \: 1}}\ {y_{1}^{1, \: 2}}}+{{u^{1, \: 2}}\ {y_{1}^{1, \: 1}}}} \ {-{{u^{1, \: 2}}\ {y_{2}^{2, \: 1}}}+{{u^{2, \: 1}}\ {y_{2}^{1, \: 2}}}-{{u^{1, \: 1}}\ {y_{1}^{2, \: 1}}}+{{u^{1, \: 1}}\ {y_{1}^{1, \: 2}}}}&{-{{u^{1, \: 2}}\ {y_{2}^{2, \: 2}}}+{{u^{2, \: 2}}\ {y_{2}^{1, \: 2}}}-{{u^{1, \: 1}}\ {y_{1}^{2, \: 2}}}+{{u^{1, \: 2}}\ {y_{1}^{1, \: 2}}}}
(20)
Type: CartesianTensor
?(1,
2,
Fraction(Polynomial(Integer)))
Definition 2
An algebra with a non-degenerate associative scalar product is
called ''pre-Frobenius''.
We may consider the problem where multiplication Y is given,
and look for all associative scalar products U = U(Y) or we
may consider an scalar product U as given, and look for all
algebras Y=Y(U) such that the scalar product is associative.
This problem can be solved using linear algebra.
axiom
)expose MCALCFN
MultiVariableCalculusFunctions is now explicitly exposed in frame
initial
K := jacobian(ravel(UA),concat(map(variables,ravel(Y)))::List Symbol);
Type: Matrix(Fraction(Polynomial(Integer)))
axiom
YY := transpose matrix [concat(map(variables,ravel(Y)))::List Symbol];
Type: Matrix(Polynomial(Integer))
axiom
K::OutputForm * YY::OutputForm = 0
\label{eq21}\begin{array}{@{}l} \displaystyle {{\left[ \begin{array}{cccccccc} 0 & 0 & 0 & 0 &{{u^{2, \: 1}}-{u^{1, \: 2}}}& 0 & 0 & 0 \ {u^{1, \: 2}}& -{u^{1, \: 1}}& 0 & 0 &{u^{2, \: 2}}& -{u^{1, \: 2}}& 0 & 0 \ 0 &{u^{1, \: 1}}& -{u^{1, \: 1}}& 0 & 0 &{u^{2, \: 1}}& -{u^{1, \: 2}}& 0 \ 0 &{u^{1, \: 2}}& 0 & -{u^{1, \: 1}}& 0 &{u^{2, \: 2}}& 0 & -{u^{1, \: 2}} \ -{u^{2, \: 1}}& 0 &{u^{1, \: 1}}& 0 & -{u^{2, \: 2}}& 0 &{u^{2, \: 1}}& 0 \ 0 & -{u^{2, \: 1}}&{u^{1, \: 2}}& 0 & 0 & -{u^{2, \: 2}}&{u^{2, \: 2}}& 0 \ 0 & 0 & -{u^{2, \: 1}}&{u^{1, \: 1}}& 0 & 0 & -{u^{2, \: 2}}&{u^{2, \: 1}} \ 0 & 0 & 0 &{-{u^{2, \: 1}}+{u^{1, \: 2}}}& 0 & 0 & 0 & 0
(21)
Type: Equation(OutputForm
?)
The matrix K transforms the coefficients of the tensor Y
into coefficients of the tensor UA. We are looking for
coefficients of the tensor U such that K transforms Y
into UA=0 for any Y.
A necessary condition for the equation to have a non-trivial
solution is that the matrix K be degenerate.
Theorem 1
The scalar product of all 2-dimensional pre-Frobenius
algebras is symmetric.
Proof: Consider the determinant of the matrix K above.
axiom
Kd:DMP(concat map(variables,ravel(U)),FRAC INT) := factor determinant(K)
\label{eq22}\begin{array}{@{}l} \displaystyle {{{u^{1, \: 1}}^2}\ {{u^{1, \: 2}}^4}\ {{u^{2, \: 2}}^2}}-{4 \ {{u^{1, \: 1}}^2}\ {{u^{1, \: 2}}^3}\ {u^{2, \: 1}}\ {{u^{2, \: 2}}^2}}+ \ \ \displaystyle {6 \ {{u^{1, \: 1}}^2}\ {{u^{1, \: 2}}^2}\ {{u^{2, \: 1}}^2}\ {{u^{2, \: 2}}^2}}-{4 \ {{u^{1, \: 1}}^2}\ {u^{1, \: 2}}\ {{u^{2, \: 1}}^3}\ {{u^{2, \: 2}}^2}}+ \ \ \displaystyle {{{u^{1, \: 1}}^2}\ {{u^{2, \: 1}}^4}\ {{u^{2, \: 2}}^2}}-{2 \ {u^{1, \: 1}}\ {{u^{1, \: 2}}^5}\ {u^{2, \: 1}}\ {u^{2, \: 2}}}+ \ \ \displaystyle {8 \ {u^{1, \: 1}}\ {{u^{1, \: 2}}^4}\ {{u^{2, \: 1}}^2}\ {u^{2, \: 2}}}-{{12}\ {u^{1, \: 1}}\ {{u^{1, \: 2}}^3}\ {{u^{2, \: 1}}^3}\ {u^{2, \: 2}}}+ \ \ \displaystyle {8 \ {u^{1, \: 1}}\ {{u^{1, \: 2}}^2}\ {{u^{2, \: 1}}^4}\ {u^{2, \: 2}}}-{2 \ {u^{1, \: 1}}\ {u^{1, \: 2}}\ {{u^{2, \: 1}}^5}\ {u^{2, \: 2}}}+ \ \ \displaystyle {{{u^{1, \: 2}}^6}\ {{u^{2, \: 1}}^2}}-{4 \ {{u^{1, \: 2}}^5}\ {{u^{2, \: 1}}^3}}+{6 \ {{u^{1, \: 2}}^4}\ {{u^{2, \: 1}}^4}}- \ \ \displaystyle {4 \ {{u^{1, \: 2}}^3}\ {{u^{2, \: 1}}^5}}+{{{u^{1, \: 2}}^2}\ {{u^{2, \: 1}}^6}}
(22)
Type: DistributedMultivariatePolynomial
?([*002u11,
*002u12,
*002u21,
*002u22],
Fraction(Integer))
The scalar product must also be non-degenerate
axiom
Ud:DMP(concat map(variables,ravel(U)),FRAC INT) := determinant [[U[i,j] for j in 1..n] for i in 1..n]
\label{eq23}{{u^{1, \: 1}}\ {u^{2, \: 2}}}-{{u^{1, \: 2}}\ {u^{2, \: 1}}}
(23)
Type: DistributedMultivariatePolynomial
?([*002u11,
*002u12,
*002u21,
*002u22],
Fraction(Integer))
therefore U must be symmetric.
axiom
nthFactor(Kd,1)
\label{eq24}{u^{1, \: 2}}-{u^{2, \: 1}}
(24)
Type: DistributedMultivariatePolynomial
?([*002u11,
*002u12,
*002u21,
*002u22],
Fraction(Integer))
axiom
US:T := unravel(map(x+->subst(x,U[2,1]=U[1,2]),ravel U))
\label{eq25}\left[ \begin{array}{cc} {u^{1, \: 1}}&{u^{1, \: 2}} \ {u^{1, \: 2}}&{u^{2, \: 2}}
(25)
Type: CartesianTensor
?(1,
2,
Fraction(Polynomial(Integer)))
Theorem 2
All 2-dimensional algebras with associative scalar product are symmetric.
Proof: The basis of the null space of the symmetric
K matrix are all symmetric
axiom
UAS:T := unravel(map(x+->subst(x,U[2,1]=U[1,2]),ravel UA))
\label{eq26}\begin{array}{@{}l} \displaystyle \left[{\left[ \begin{array}{cc} 0 &{-{{u^{1, \: 2}}\ {y_{2}^{1, \: 2}}}+{{u^{2, \: 2}}\ {y_{2}^{1, \: 1}}}-{{u^{1, \: 1}}\ {y_{1}^{1, \: 2}}}+{{u^{1, \: 2}}\ {y_{1}^{1, \: 1}}}} \ {-{{u^{1, \: 2}}\ {y_{2}^{2, \: 1}}}+{{u^{1, \: 2}}\ {y_{2}^{1, \: 2}}}-{{u^{1, \: 1}}\ {y_{1}^{2, \: 1}}}+{{u^{1, \: 1}}\ {y_{1}^{1, \: 2}}}}&{-{{u^{1, \: 2}}\ {y_{2}^{2, \: 2}}}+{{u^{2, \: 2}}\ {y_{2}^{1, \: 2}}}-{{u^{1, \: 1}}\ {y_{1}^{2, \: 2}}}+{{u^{1, \: 2}}\ {y_{1}^{1, \: 2}}}}
(26)
Type: CartesianTensor
?(1,
2,
Fraction(Polynomial(Integer)))
axiom
--solve(ravel(UAS),removeDuplicates concat map(variables,ravel(US)))
KS := jacobian(ravel(UAS),concat(map(variables,ravel(Y)))::List Symbol);
Type: Matrix(Fraction(Polynomial(Integer)))
axiom
NS:=nullSpace(KS)
\label{eq27}\begin{array}{@{}l} \displaystyle \left[{\left[{{{u^{1, \: 1}}^2}\over{{u^{1, \: 2}}^2}}, \:{{u^{1, \: 1}}\over{u^{1, \: 2}}}, \:{{u^{1, \: 1}}\over{u^{1, \: 2}}}, \: 1, \: 0, \: 0, \: 0, \: 0 \right]}, \: \right. \ \ \displaystyle \left.{\left[ -{{u^{2, \: 2}}\over{u^{1, \: 2}}}, \: 0, \: 0, \: 0, \: 1, \: 0, \: 0, \: 0 \right]}, \: \right. \ \ \displaystyle \left.{\left[{{-{{u^{1, \: 1}}\ {u^{2, \: 2}}}+{{u^{1, \: 2}}^2}}\over{{u^{1, \: 2}}^2}}, \: -{{u^{2, \: 2}}\over{u^{1, \: 2}}}, \: -{{u^{2, \: 2}}\over{u^{1, \: 2}}}, \: 0, \: 0, \: 1, \: 1, \: 0 \right]}, \: \right. \ \ \displaystyle \left.{\left[{{u^{1, \: 1}}\over{u^{1, \: 2}}}, \: 1, \: 1, \: 0, \: 0, \: 0, \: 0, \: 1 \right]}\right]
(27)
Type: List(Vector(Fraction(Polynomial(Integer))))
axiom
SS:=map((x,y)+->x=y,concat map(variables,ravel Y),
entries reduce(+,[p[i]*NS.i for i in 1..#NS]))
\label{eq28}\begin{array}{@{}l} \displaystyle \left[{ \begin{array}{@{}l} \displaystyle {y_{1}^{1, \: 1}}={{\left( \begin{array}{@{}l} \displaystyle {{u^{1, \: 1}}\ {u^{1, \: 2}}\ {p_{4}}}+{{\left(-{{u^{1, \: 1}}\ {u^{2, \: 2}}}+{{u^{1, \: 2}}^2}\right)}\ {p_{3}}}- \ \ \displaystyle {{u^{1, \: 2}}\ {u^{2, \: 2}}\ {p_{2}}}+{{{u^{1, \: 1}}^2}\ {p_{1}}}
(28)
Type: List(Equation(Fraction(Polynomial(Integer))))
axiom
YS:T := unravel(map(x+->subst(x,SS),ravel Y))
\label{eq29}\begin{array}{@{}l} \displaystyle \left[{\left[ \begin{array}{cc} {{{{u^{1, \: 1}}\ {u^{1, \: 2}}\ {p_{4}}}+{{\left(-{{u^{1, \: 1}}\ {u^{2, \: 2}}}+{{u^{1, \: 2}}^2}\right)}\ {p_{3}}}-{{u^{1, \: 2}}\ {u^{2, \: 2}}\ {p_{2}}}+{{{u^{1, \: 1}}^2}\ {p_{1}}}}\over{{u^{1, \: 2}}^2}}&{{{{u^{1, \: 2}}\ {p_{4}}}-{{u^{2, \: 2}}\ {p_{3}}}+{{u^{1, \: 1}}\ {p_{1}}}}\over{u^{1, \: 2}}} \ {{{{u^{1, \: 2}}\ {p_{4}}}-{{u^{2, \: 2}}\ {p_{3}}}+{{u^{1, \: 1}}\ {p_{1}}}}\over{u^{1, \: 2}}}&{p_{1}}
(29)
Type: CartesianTensor
?(1,
2,
Fraction(Polynomial(Integer)))
This is a 4-parameter family of 2-d pre-Frobenius algebras with
a given admissible (i.e. symmetric) scalar product.
axiom
UASS:T := unravel(map(x+->subst(x,SS),ravel UAS))
\label{eq30}\begin{array}{@{}l} \displaystyle \left[{\left[ \begin{array}{cc} 0 & 0 \ 0 & 0
(30)
Type: CartesianTensor
?(1,
2,
Fraction(Polynomial(Integer)))