Module: tfm.optimization

View source on GitHub

Optimization package definition.

Modules

adafactor_optimizer module: Adafactor optimizer.

base_config module: Base configurations to standardize experiments.

configs module

ema_optimizer module: Exponential moving average optimizer.

lamb module: Layer-wise Adaptive Moments (LAMB) optimizer.

lars module: Layer-wise adaptive rate scaling optimizer.

legacy_adamw module: Adam optimizer with weight decay that exactly matches the original BERT.

lr_cfg module: Dataclasses for learning rate schedule config.

lr_schedule module: Learning rate schedule classes.

math module: This module provides access to the mathematical functions defined by the C standard.

oneof module: Config class that supports oneof functionality.

opt_cfg module: Dataclasses for optimizer configs.

optimizer_factory module: Optimizer factory class.

slide_optimizer module: SLIDE optimizer.

Classes

class AdafactorConfig: Configuration for Adafactor optimizer.

class AdagradConfig: Configuration for Adagrad optimizer.

class AdamConfig: Configuration for Adam optimizer.

class AdamExperimentalConfig: Configuration for experimental Adam optimizer.

class AdamWeightDecayConfig: Configuration for Adam optimizer with weight decay.

class AdamWeightDecayExperimentalConfig: Configuration for Adam optimizer with weight decay.

class BaseOptimizerConfig: Base optimizer config.

class ConstantLrConfig: Configuration for constant learning rate.

class CosineDecayWithOffset: A LearningRateSchedule that uses a cosine decay with optional warmup.

class CosineLrConfig: Configuration for Cosine learning rate decay.

class DirectPowerDecay: Learning rate schedule follows lr * (step)^power.

class DirectPowerLrConfig: Configuration for DirectPower learning rate decay.

class EMAConfig: Exponential moving average optimizer config.

class ExponentialDecayWithOffset: A LearningRateSchedule that uses an exponential decay schedule.

class ExponentialLrConfig: Configuration for exponential learning rate decay.

class ExponentialMovingAverage: Optimizer that computes an exponential moving average of the variables.

class LAMBConfig: Configuration for LAMB optimizer.

class LARSConfig: Layer-wise adaptive rate scaling config.

class LinearWarmup: Linear warmup schedule.

class LinearWarmupConfig: Configuration for linear warmup schedule config.

class LrConfig: Configuration for lr schedule.

class OptimizationConfig: Configuration for optimizer and learning rate schedule.

class OptimizerConfig: Configuration for optimizer.

class OptimizerFactory: Optimizer factory class.

class PiecewiseConstantDecayWithOffset: A LearningRateSchedule that uses a piecewise constant decay schedule.

class PolynomialDecayWithOffset: A LearningRateSchedule that uses a polynomial decay schedule.

class PolynomialLrConfig: Configuration for polynomial learning rate decay.

class PolynomialWarmUp: Applies polynomial warmup schedule on a given learning rate decay schedule.

class PolynomialWarmupConfig: Configuration for linear warmup schedule config.

class PowerAndLinearDecay: Learning rate schedule with multiplied by linear decay at the end.

class PowerAndLinearDecayLrConfig: Configuration for DirectPower learning rate decay.

class PowerDecayWithOffset: Power learning rate decay with offset.

class PowerDecayWithOffsetLrConfig: Configuration for power learning rate decay with step offset.

class RMSPropConfig: Configuration for RMSProp optimizer.

class SGDConfig: Configuration for SGD optimizer.

class SGDExperimentalConfig: Configuration for SGD optimizer.

class SLIDEConfig: Configuration for SLIDE optimizer.

class StepCosineDecayWithOffset: Stepwise cosine learning rate decay with offset.

class StepCosineLrConfig: Configuration for stepwise learning rate decay.

class StepwiseLrConfig: Configuration for stepwise learning rate decay.

class WarmupConfig: Configuration for lr schedule.

Functions

register_optimizer_cls(...): Register customize optimizer cls.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.

Last updated 2024年02月02日 UTC.