tfc.layers.Parameter

View source on GitHub

Reparameterized Layer variable.

View aliases

Main aliases

tfc.Parameter

tfc.layers.Parameter(
 name=None
)

This object represents a parameter of a tf.keras.layer.Layer object which isn't directly stored in a tf.Variable, but can be represented as a function (of any number of tf.Variable attributes).

Attributes

name Returns the name of this module as passed or determined in the ctor.

name_scope Returns a tf.name_scope instance for this class.
non_trainable_variables Sequence of non-trainable variables owned by this module and its submodules.
submodules Sequence of all sub-modules.

Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on).

a = tf.Module()
b = tf.Module()
c = tf.Module()
a.b = b
b.c = c
list(a.submodules) == [b, c]
True
list(b.submodules) == [c]
True
list(c.submodules) == []
True

trainable_variables Sequence of trainable variables owned by this module and its submodules.

variables Sequence of variables owned by this module and its submodules.

Methods

get_config

View source

@abc.abstractmethod
get_config()

Returns the configuration of the Parameter.

get_weights

View source

get_weights()

set_weights

View source

set_weights(
 weights
)

with_name_scope

@classmethod
with_name_scope(
 method
)

Decorator to automatically enter the module name scope.

classMyModule(tf.Module):
 @tf.Module.with_name_scope
 def__call__(self, x):
 if not hasattr(self, 'w'):
 self.w = tf.Variable(tf.random.normal([x.shape[1], 3]))
 return tf.matmul(x, self.w)

Using the above module would produce tf.Variables and tf.Tensors whose names included the module name:

mod = MyModule()
mod(tf.ones([1, 2]))
<tf.Tensor: shape=(1, 3), dtype=float32, numpy=..., dtype=float32)>
mod.w
<tf.Variable 'my_module/Variable:0' shape=(2, 3) dtype=float32,
numpy=..., dtype=float32)>

Args
method The method to wrap.

Returns
The original method wrapped such that it enters the module's name scope.

__call__

View source

@abc.abstractmethod
__call__(
 compute_dtype=None
)

Computes and returns the parameter value as a tf.Tensor.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.

Last updated 2024年04月26日 UTC.